Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Perception for Detection and Grasping

  • Chapter
  • First Online:
Aerial Robotic Manipulation

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 129))

Abstract

This research presents a methodology for the detection of the crawler used in the project AEROARMS. The approach consisted on using a two-step progressive strategy, going from rough detection and tracking, for approximation maneuvers, to an accurate positioning step based on fiducial markers. Two different methods are explained for the first step, one using efficient image segmentation approach; and the second one using Deep Learning techniques to detect the center of the crawler. The fiducial markers are used for precise localization of the crawler in a similar way as explained in earlier chapters. The methods can run in real-time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chiverton, J., Xie, X., Mirmehdi, M.: Automatic bootstrapping and tracking of object contours 21(3), 1231–1245

    Google Scholar 

  2. Han, Z., Ye, O., Jiao, J.: Online feature evaluation for object tracking using kalman filter. In: 2008 19th International Conference on Pattern Recognition, pp. 1–4

    Google Scholar 

  3. Pan, J., Hu, B., Zhang, J.Q.: Robust and accurate object tracking under various types of occlusions 18(2), 223–236

    Google Scholar 

  4. Liu, X., Lin, L., Yan, S., Jin, H., Jiang, W.: Adaptive object tracking by learning hybrid template online 21(11), 1588–1599

    Google Scholar 

  5. Liu, Y., Zheng, Y.F.: Video object segmentation and tracking using psi;-learning classification 15(7), 885–899

    Google Scholar 

  6. Zhang, X., Hu, W., Qu, W., Maybank, S.: Multiple object tracking via species-based particle swarm optimization 20(11), 1590–1602

    Google Scholar 

  7. Porikli, F., Yilmaz, A.: Object detection and tracking. In: Video Analytics for Business Intelligence, Studies in Computational Intelligence, pp. 3–41. Springer, Berlin

    Google Scholar 

  8. Dalal, N., Triggs, B., Schmid, C.: Human detection using oriented histograms of flow and appearance. In: Computer Vision ECCV 2006. Lecture Notes in Computer Science, pp. 428–441. Springer, Berlin

    Google Scholar 

  9. Bodor, R., Jackson, B., Papanikolopoulos, N.: Vision-based human tracking and activity recognition. In: Proceedings of the 11th Mediterranean Conference on Control and Automation, vol. 1

    Google Scholar 

  10. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: p. 1556 (2014). arXiv: 1409

  11. Lecun, Y., Muller, U., Ben, J., Cosatto, E.: Off-Road Obstacle Avoidance through End-to-End Learning

    Google Scholar 

  12. Rice, A.C., Harle, R.K., Beresford, A.R.: Analysing fundamental properties of marker-based vision system designs 2(4), 453–471

    Google Scholar 

  13. Rekimoto, J.: Matrix: a realtime object identification and registration method for augmented reality. In: Proceedings 3rd Asia Pacific Computer Human Interaction (Cat. No.98EX110), pp. 63–68

    Google Scholar 

  14. Kato, H., Billinghurst, M., Poupyrev, I., Imamoto, K., Tachibana, K.: Virtual object manipulation on a table-top AR environment. In: Proceedings IEEE and ACM International Symposium on Augmented Reality (ISAR 2000), pp. 111–119

    Google Scholar 

  15. Fiala, M.: ARTag, a fiducial marker system using digital techniques. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol. 2, pp. 590–596

    Google Scholar 

  16. Olson, E.: AprilTag: A robust and flexible visual fiducial system. In: 2011 IEEE International Conference on Robotics and Automation, pp. 3400–3407

    Google Scholar 

  17. Fiala, M.: Designing highly reliable fiducial markers 32(7), 1317–1324

    Google Scholar 

  18. Garrido-Jurado, S., Muoz-Salinas, R., Madrid-Cuevas, F.J., Marn-Jimnez, M.J.: Automatic generation and detection of highly reliable fiducial markers under occlusion 47(6), 2280–2292

    Google Scholar 

  19. Siltanen, S., Hakkarainen, M., Honkamaa, P.: Automatic marker field calibration. In: Proceedings of Virtual Reality International Conference (VRIC2007), pp. 261–267. Laval, France

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Guerra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guerra, E., Pumarola, A., Grau, A., Sanfeliu, A. (2019). Perception for Detection and Grasping . In: Ollero, A., Siciliano, B. (eds) Aerial Robotic Manipulation. Springer Tracts in Advanced Robotics, vol 129. Springer, Cham. https://doi.org/10.1007/978-3-030-12945-3_20

Download citation

Publish with us

Policies and ethics