Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Optimal Tuning of Altitude Controller Parameters of Unmanned Aerial Vehicle Using Iterative Learning Approach

  • Conference paper
  • First Online:
Automation 2019 (AUTOMATION 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 920))

Included in the following conference series:

Abstract

Dynamics and flight stabilization of a multirotor unmanned aerial vehicle (UAV) can be shaped by appropriate mechanisms of tuning parameters of its position and orientation controllers. In the article, the attention is focused on a fixed-parameters altitude controller. Its gains can be tuned optimally and automatically according to the expected criterion, and the search process takes place during the UAV short-time flight. For this purpose, it is proposed to use the auto-tuning method based on the bootstrapping technique and zero-order optimization using Fibonacci-search algorithm. The theoretical basis of the proposed method and discussion of the results from conducted simulation experiments for the exemplary quadrotor model, are presented in the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bonaccorso, G.: Mastering Machine Learning Algorithms. Expert Techniques to Implement Popular Machine Learning Algorithms and Fine-Tune Your Models. Packt Publishing, Birmingham (2018)

    Google Scholar 

  2. Mohammed, M., Khan, M.B., Bashier, M.B.E.: Machine Learning: Algorithms and Applications. CRC Press, Boca Raton (2016)

    Book  Google Scholar 

  3. Valavanis, K., Vachtsevanos, G.V. (eds.): Handbook of Unmanned Aerial Vehicles. Springer, Heidelberg (2015)

    Google Scholar 

  4. Koch, W., Mancuso, R., West, R., Bestavros, A.: Reinforcement Learning for UAV Attitude Control. arXiv (2018). https://arxiv.org/abs/1804.04154

  5. Ramirez-Atencia, C., Rodriguez-Fernandez, V., Gonzalez-Pardo, A., Camacho, D.: New artificial intelligence approaches for future UAV ground control stations. In: 2017 IEEE Congress on Evolutionary Computation (CEC), pp. 2775–2782. IEEE Press (2017). https://doi.org/10.1109/CEC.2017.7969645

  6. Imanberdiyev, N., Fu, C., Kayacan, E., Chen, I-M.: Autonomous navigation of UAV by using real-time model-based reinforcement learning. In: 2016 14th International Conference on Control, Automation, Robotics and Vision (ICARCV), pp. 1–6. IEEE Press (2017). https://doi.org/10.1109/ICARCV.2016.7838739

  7. Rodriguez-Ramos, A., Sampedro, C., Bavle, H., de la Puente, P., Campoy, P.: A deep reinforcement learning strategy for UAV autonomous landing on a moving platform. J. Intell. Robot. Syst. 1–16 (2018). https://doi.org/10.1007/s10846-018-0891-8

    Article  Google Scholar 

  8. Berkenkamp, F., Schoellig, A.P., Krause, A.: Safe controller optimization for quadrotors with Gaussian processes. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 491–496. IEEE Press, Sweden (2016). https://doi.org/10.1109/ICRA.2016.7487170

  9. Muliadi, J., Kusumoputro, B.: Neural network control system of UAV altitude dynamics and its comparison with the PID control system. J. Adv. Transp. 1–18 (2018). https://doi.org/10.1155/2018/3823201

    Article  Google Scholar 

  10. Carrio, A., Sampedro, C., Rodriguez-Ramos, A., Campoy, P.: A review of deep learning methods and applications for unmanned aerial vehicles. J. Sens. 1–13 (2017). https://doi.org/10.1155/2017/3296874

    Article  Google Scholar 

  11. Giernacki, W., Fraire, T.E., Kozierski, P.: Cuttlefish optimization algorithm in autotuning of altitude controller of unmanned aerial vehicle (UAV). In: Third Iberian Robotics Conference. ROBOT 2017. AISC, vol. 693, pp. 841–852. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-70833-1_68

    Google Scholar 

  12. Alikhani, H.: PID type iterative learning control with optimal variable coefficients. In: 2010 5th IEEE International Conference Intelligent Systems, pp. 479–484. IEEE Press, London (2010). https://doi.org/10.1109/IS.2010.5548329

  13. Berkenkamp, F., Krause, A., Schoellig, A.: Bayesian optimization with safety constraints: safe and automatic parameter tuning in robotics. arXiv (2018). https://arxiv.org/pdf/1602.04450.pdf

  14. Corke, P.: Robotics, Vision and Control: Fundamental Algorithms in MATLAB\(^{\textregistered }\) Second, Completely Revised, Extended and Updated Edition (Springer Tracts in Advanced Robotics). Springer, Heidelberg (2017)

    Book  Google Scholar 

  15. Giernacki, W., Horla, D., Espinoza Fraire, T.: Strategy for Optimal Autotuning of the Fixed-Wing UAV Controllers by the Use of Zero-order Optimization Algorithm (in review)

    Google Scholar 

  16. Horla, D.: Computational Methods in Optimization, 2nd edn, p. 358. Publishing House of Poznan University of Technology, Poznan (2016). (in Polish)

    Google Scholar 

  17. Kiefer, J.: Sequential minimax search for a maximum. Proc. Am. Math. Soc. 4(3), 502–506 (1953). https://doi.org/10.2307/2032161

    Article  MathSciNet  MATH  Google Scholar 

  18. Lewandowski, M.: Optimization methods – theory and selected algorithms. https://web.sgh.waw.pl/~mlewan1/Site/MO_files/mo_skrypt_21_12.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wojciech Giernacki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Giernacki, W. (2020). Optimal Tuning of Altitude Controller Parameters of Unmanned Aerial Vehicle Using Iterative Learning Approach. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds) Automation 2019. AUTOMATION 2019. Advances in Intelligent Systems and Computing, vol 920. Springer, Cham. https://doi.org/10.1007/978-3-030-13273-6_38

Download citation

Publish with us

Policies and ethics