Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Identification of Fractional Order Transfer Function Model Using Biologically Inspired Algorithms

  • Conference paper
  • First Online:
Automation 2019 (AUTOMATION 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 920))

Included in the following conference series:

Abstract

This paper presents the identification of a non-integer order model for the heat transfer process using the particle swarm optimization algorithm (PSO), cockroach swarm optimization algorithm (CSO), gray wolf optimizer algorithm (GWO) and fminsearch function. In the beginning, fractional order systems have been discussed. Then an overview of individual optimization methods was prepared. Simulations have been carried out for all used the algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Weilbeer, M.: Efficient Numerical Methods for Fractional Differential Equations and their Analytical Background. Technischen Universitat Braunschweig (2005)

    Google Scholar 

  2. Malti, R., Aoun, M., Sabatier, J., Oustaloup, A.: Tutorial on system identification using fractional differentiation models. In: 14th IFAC Symposium on System Identification on International Federation of Automatic Control (IFAC), March 2006, Newcastle, Australia. pp. 606–611 (2006)

    Article  Google Scholar 

  3. Kwiecien, J. Filipowicz, F.: Algorytmy stadne w problemach optymalizacji. Automatyka, Tom 11, Zeszyt 2 (2011)

    Google Scholar 

  4. Das, S.: Functional Fractional Calculus for System Identification and Controls. Springer, Heidelberg (2008)

    MATH  Google Scholar 

  5. Kaczorek, T.: Selected Problems of Fractional System Theory. Springer, Heidelberg (2011)

    Book  Google Scholar 

  6. Meng, L., Wang, D., Han, P.: Identification of fractional order system using particle swarm optimization. In: 2012 International Conference on Machine Learning and Cybernetics, July 2012. https://doi.org/10.1109/ICMLC.2012.6359551

  7. Petras I.: Fractional derivatives, fractional integrals and fraction differential equations. Technical University of Kosice (2012)

    Google Scholar 

  8. MathWorks. Documentation - fminsearch. https://www.mathworks.com/help/matlab/ref/fminsearch.html

  9. Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: IEEE World Congress on Computational Intelligence, June 1998. https://doi.org/10.1109/ICEC.1998.699146

  10. Kwiecien, J., Filipowicz, B.: Comparison of firefly and cockroach algorithms in selected discrete and combinatorial problems. Bull. Pol. Acad. Sci. Tech. 62(4), 797–804 (2014)

    Google Scholar 

  11. Obagbuwa, I., Adewumi, A.: An improved cockroach swarm optimization. PubMed, May 2014. https://doi.org/10.1155/2014/375358

    Article  Google Scholar 

  12. Oprzedkiewicz, K., Dziedzic, K.: New parameter identification method for the fractional order, state space model of heat transfer process. In: Automation 2018, pp. 401–417. Springer (2018). https://doi.org/10.1007/978-3-319-77179-3_38

    Google Scholar 

  13. Jangir, P., Bhesdadiya, R., Ladumor, D., Trivedi, I.: A multi-objective grey wolf optimization algorithm for economic/environmental dispatch. In: PNFE-2016, At St. Peters Engineering college, Hyderabad, India, October 2016. https://doi.org/10.13140/RG.2.2.21536.79364

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaudia Dziedzic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dziedzic, K. (2020). Identification of Fractional Order Transfer Function Model Using Biologically Inspired Algorithms. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds) Automation 2019. AUTOMATION 2019. Advances in Intelligent Systems and Computing, vol 920. Springer, Cham. https://doi.org/10.1007/978-3-030-13273-6_5

Download citation

Publish with us

Policies and ethics