Abstract
This paper describes the methodology and results of research on distinguishing the rotation speed of a CNC machine spindle with the help of ultrasonic signal as well as a classifier created with the help of neural networks. Tests were carried out on laboratory object in real-time. Achieved research results are very good, and developed possible solutions for use in industry and education. The article describes the problems and the methodology of achieved research, indicates the used hardware and software solutions, as well as an analysis of the results.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Mączka, T., Żabiński, T.: Platform for intelligent manufacturing systems with elements of knowledge discovery. In: Manufacturing System, pp. 183–204. InTech, Croatia (2012)
Jemielniak, K.: Automatyczna diagnostyka stanu narzędzia i procesu skrawania. Oficyna wydawnicza Politechniki Warszawskiej, Warszawa (2012)
Sokołowski, A.: Automatyzacja wytwarzania. Zastosowania sztucznej inteligencji w diagnostyce obrabiarek i procesu skrawania. Wydawnictwo Politechniki Śląskiej, Gliwice (2013)
Teti, R., Jemielniak, K., O’Donnell, G., Dornfeld, D.: Advanced monitoring of machining operations. CIRP Ann. - Manuf. Technol. 59, 717–739 (2010)
Linxia, L., Radu, P.: Machinery time to failure prediction - case study and lesson learned for a spindle bearing application. In: IEEE Prognostics and Health Management (2013)
Dayong, J., Taiyong, W., Yongxiang, J., Lu, L., Miao, H.: Reliability assessment of machine tool spindle bearing based on vibration feature. In: International Conference on Digital Manufacturing and Automation, China (2010)
Abu-Mahfouz, I.: Drilling wear detection and classification using vibration signals and artificial neural networks. Int. J. Mach. Tools Manuf 43, 707–720 (2003)
Jantunen, E., Jokinen, H.: Automated on-line diagnosis of cutting tool condition. Int. J. Flex. Autom. Integr. Manuf. 4, 273–287 (1996)
Jantunen, E.: A summary of methods applied to tool condition monitoring in drilling. Int. J. Mach. Tools Manuf 42, 997–1010 (2002)
Piecuch, G., Żabiński, T.: Implementation of computational intelligence methods for CNC machine spindle imbalance prediction. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds.) Automation 2018, AUTOMATION (2018)
Matlab & Simulink: Neural Network Pattern Recognition Tool – Manual
Mączka, T.: Zastosowanie metod inteligencji obliczeniowej i wspomagania decyzji w systemach produkcyjnych. Rozprawa doktorska, Rzeszów (2016)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Piecuch, G. (2020). Rotation Speed Detection of a CNC Spindle Based on Ultrasonic Signal. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds) Automation 2019. AUTOMATION 2019. Advances in Intelligent Systems and Computing, vol 920. Springer, Cham. https://doi.org/10.1007/978-3-030-13273-6_56
Download citation
DOI: https://doi.org/10.1007/978-3-030-13273-6_56
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-13272-9
Online ISBN: 978-3-030-13273-6
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)