Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Rotation Speed Detection of a CNC Spindle Based on Ultrasonic Signal

  • Conference paper
  • First Online:
Automation 2019 (AUTOMATION 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 920))

Included in the following conference series:

  • 1001 Accesses

Abstract

This paper describes the methodology and results of research on distinguishing the rotation speed of a CNC machine spindle with the help of ultrasonic signal as well as a classifier created with the help of neural networks. Tests were carried out on laboratory object in real-time. Achieved research results are very good, and developed possible solutions for use in industry and education. The article describes the problems and the methodology of achieved research, indicates the used hardware and software solutions, as well as an analysis of the results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mączka, T., Żabiński, T.: Platform for intelligent manufacturing systems with elements of knowledge discovery. In: Manufacturing System, pp. 183–204. InTech, Croatia (2012)

    Google Scholar 

  2. Jemielniak, K.: Automatyczna diagnostyka stanu narzędzia i procesu skrawania. Oficyna wydawnicza Politechniki Warszawskiej, Warszawa (2012)

    Google Scholar 

  3. Sokołowski, A.: Automatyzacja wytwarzania. Zastosowania sztucznej inteligencji w diagnostyce obrabiarek i procesu skrawania. Wydawnictwo Politechniki Śląskiej, Gliwice (2013)

    Google Scholar 

  4. Teti, R., Jemielniak, K., O’Donnell, G., Dornfeld, D.: Advanced monitoring of machining operations. CIRP Ann. - Manuf. Technol. 59, 717–739 (2010)

    Article  Google Scholar 

  5. Linxia, L., Radu, P.: Machinery time to failure prediction - case study and lesson learned for a spindle bearing application. In: IEEE Prognostics and Health Management (2013)

    Google Scholar 

  6. Dayong, J., Taiyong, W., Yongxiang, J., Lu, L., Miao, H.: Reliability assessment of machine tool spindle bearing based on vibration feature. In: International Conference on Digital Manufacturing and Automation, China (2010)

    Google Scholar 

  7. Abu-Mahfouz, I.: Drilling wear detection and classification using vibration signals and artificial neural networks. Int. J. Mach. Tools Manuf 43, 707–720 (2003)

    Article  Google Scholar 

  8. Jantunen, E., Jokinen, H.: Automated on-line diagnosis of cutting tool condition. Int. J. Flex. Autom. Integr. Manuf. 4, 273–287 (1996)

    Google Scholar 

  9. Jantunen, E.: A summary of methods applied to tool condition monitoring in drilling. Int. J. Mach. Tools Manuf 42, 997–1010 (2002)

    Article  Google Scholar 

  10. Piecuch, G., Żabiński, T.: Implementation of computational intelligence methods for CNC machine spindle imbalance prediction. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds.) Automation 2018, AUTOMATION (2018)

    Google Scholar 

  11. Matlab & Simulink: Neural Network Pattern Recognition Tool – Manual

    Google Scholar 

  12. Mączka, T.: Zastosowanie metod inteligencji obliczeniowej i wspomagania decyzji w systemach produkcyjnych. Rozprawa doktorska, Rzeszów (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grzegorz Piecuch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Piecuch, G. (2020). Rotation Speed Detection of a CNC Spindle Based on Ultrasonic Signal. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds) Automation 2019. AUTOMATION 2019. Advances in Intelligent Systems and Computing, vol 920. Springer, Cham. https://doi.org/10.1007/978-3-030-13273-6_56

Download citation

Publish with us

Policies and ethics