Abstract
Such a hot open issue in the area of computer vision is the classification of visual images especially in Internet of Things (IoT) and remote mid-band and high-band based connections. In this paper, we propose a robust and efficient taxonomy framework. The proposed model utilizes the well-known convolutional neural network composites to construct a robust Visual Image Classification Network (VICNet). The VICNet consists of three convolutional layers, four Relu/Leaky Relu activation layers, three max-pooling layers and only two fully connected layers for extracting expected input image features. To make the training process faster, we used non-saturating neurons with a very efficient Graphics Processing Unit (GPU) implementation for the convolution operation. To minimize over-fitting issue in the fully-connected layers, we utilized a recently-developed regularization approach “dropout” with a dropping probability of 50%. The proposed VICNet framework has a high potential capability in the recognition of test images. The experimental and simulations results proven the efficacy of the proposed model.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Lee, J.-G., Jun, S., Cho, Y.-W., Lee, H., Kim, G.B., Seo, J.B., Kim, N.: Deep learning in medical imaging general overview. Korean J. Radiol. 18(4), 570–584 (2017)
Ahmed, M.A.O., Didaci, L., Lavi, B., Fumera, G.: Using diversity for classifier ensemble pruning: an empirical investigation. Theor. Appl. Inform. 29(1&2), 25–39 (2018)
Cai, J., Luo, J., Wang, S., Yang, S.: Feature selection in machine learning: a new perspective. Neurocomputing 300, 70–79 (2018)
Zhang, T., El-Latif, A.A.A., Wang, N., Li, Q., Niu, X.: A new image segmentation method via fusing NCut eigenvectors maps. In: Proceedings of SPIE 8334, Fourth International Conference on Digital Image Processing (ICDIP 2012), p. 833430 (2012)
Bai, X., Zhang, T., Wang, C., El-Latif, A.A.A., Niu, X.: A fully automatic player detection method based on one-class SVM. IEICE Trans. Inf. Syst. 96(2), 387–391 (2013)
Shi, Z., Yu, L., El-Latif, A.A.A., Niu, X.: Skeleton modulated topological perception map for rapid viewpoint selection. IEICE Trans. Inf. Syst. 95(10), 2585–2588 (2012)
Khfagy, M., AbdelSatar, Y., Reyad, O., Omran, N.: An integrated smoothing method for fingerprint recognition enhancement. In: International Conference on Advanced Intelligent Systems and Informatics, pp. 407–416. Springer, Cham (2016)
Ahmed, M.A.O., Reyad, O., AbdelSatar, Y., Omran, N.F.: Multi-filter score-level fusion for fingerprint verification. In: International Conference on Advanced Machine Learning Technologies and Applications, pp. 624–633. Springer, Cham (2018)
El-Sayed, M.A., Khafagy, M.A.: An identification system using eye detection based on wavelets and neural networks. arXiv preprint arXiv:1401.5108 (2014)
Nife, F., Kotulski, Z., Reyad, O.: New SDN-oriented distributed network security system. Appl. Math. Inf. Sci. 12(4), 673–683 (2018)
Gad, R., Talha, M., El-Latif, A.A.A., Zorkany, M., El-Sayed, A., El-Fishawy, N., Muhammad, G.: Iris recognition using multi-algorithmic approaches for cognitive internet of things (CIoT) framework. Future Gener. Comput. Syst. 89, 178–191 (2018)
Peng, J., El-Latif, A.A.A., Belazi, A., Kotulski, Z.: Efficient chaotic nonlinear component for secure cryptosystems. In: Ninth International Conference on Ubiquitous and Future Networks (ICUFN), pp. 989–993. IEEE (2017)
Shiddieqy, H.A., Hariadi, F.I., Adiono, T.: Implementation of deep-learning based image classification on single board computer. In: 2017 International Symposium on Electronics and Smart Devices (ISESD), pp. 133–137. IEEE (2017)
Liu, R., Yang, B., Zio, E., Chen, X.: Artificial intelligence for fault diagnosis of rotating machinery: a review. Mech. Syst. Sig. Process. 108, 33–47 (2018)
Gibson, E., Li, W., Sudre, C., Fidon, L., Shakir, D.I., Wang, G., Rosen, Z.E., Gray, R., Doel, T., Hu, Y., Whyntie, T., Nachevc, P., Modat, M., Barratta, D.C., Ourselin, S., Cardoso, M.J., Vercauteren, T.: NiftyNet: a deep-learning platform for medical imaging. Comput. Methods Programs Biomed. 158, 113–122 (2018)
Hu, W., Huang, Y., Wei, L., Zhang, F., Li, H.: Deep convolutional neural networks for hyperspectral image classification. J. Sens. 2015, 12 (2015)
El-Sayed, M.A., Estaitia, Y.A., Khafagy, M.A.: Automated edge detection using convolutional neural network. Int. J. Adv. Comput. Sci. Appl. 4(10), 10–20 (2013)
Lavi, B., Ahmed, M.A.O.: Interactive fuzzy cellular automata for fast person re-identification. In: The International Conference on Advanced Machine Learning Technologies and Applications (AMLTA2018), pp. 147–157. Springer, Cham (2018)
LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)
Li, J., Zhang, B., Lu, G., Zhang, D.: Generative multi-view and multi-feature learning for classification. Inf. Fusion 45, 215–226 (2019)
Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)
Ahmed, M.A.O.: Trained neural networks ensembles weight connections analysis. In: International Conference on Advanced Machine Learning Technologies and Applications, pp. 242–251. Springer, Cham (2018)
Szegedy, C., Liu, W., Jia, Y., et al.: Going deeper with convolutions. In: IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, pp. 1–9, (2015). IEEE
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, California, USA, pp. 1097–105 (2012)
He, K., Zhang, X., Ren, S., et al.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, pp. 770–778, (2016)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition (2015, 2017). https://arxiv.org/pdf/1409.1556v6.pdf
Khosla, A., Jayadevaprakash, N., Yao, B., Li, F.-F.: Stanford dogs dataset (2011). http://vision.stanford.edu/aditya86/ImageNetDogs
Khosla, A., Jayadevaprakash, N., Yao, B., Li, F.-F.: Novel dataset for fine-grained image categorization. In: First Workshop on Fine-Grained Visual Categorization, IEEE Conference on Computer Vision and Pattern Recognition, Colorado Springs, CO, June 2011
MATLAB: Statistics and Machine Learning Toolbox. The mathworks (2018)
Sokolova, M., Lapalme, G.: A systematic analysis of performance measures for classification tasks. Inf. Process. Manag. 45(4), 427–437 (2009)
Khfagy, M.A.O.A.: Visual image classification convolutional network (VICNET) (2019). https://github.com/mkhfagy/VICNet
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
El-Rahiem, B.A., Ahmed, M.A.O., Reyad, O., El-Rahaman, H.A., Amin, M., El-Samie, F.A. (2020). An Efficient Deep Convolutional Neural Network for Visual Image Classification. In: Hassanien, A., Azar, A., Gaber, T., Bhatnagar, R., F. Tolba, M. (eds) The International Conference on Advanced Machine Learning Technologies and Applications (AMLTA2019). AMLTA 2019. Advances in Intelligent Systems and Computing, vol 921. Springer, Cham. https://doi.org/10.1007/978-3-030-14118-9_3
Download citation
DOI: https://doi.org/10.1007/978-3-030-14118-9_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-14117-2
Online ISBN: 978-3-030-14118-9
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)