Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Smart Cities Data: Framework, Applications, and Challenges

  • Living reference work entry
  • First Online:
Handbook of Smart Cities

Abstract

Recent technological developments and the availability of enormous amounts of real-time data have played a vital role in the expansion, evolution, and success of smart city projects. Smart data can be used in a variety of smart city applications, but difficulties in managing such data are pushing smart cities toward the adoption of data management frameworks. Many studies have brought into focus the importance of these frameworks as they combine data collection, processing, analysis, management, and visualization and provide privacy and security features for different smart city applications, i.e., transportation, to promote a better quality of life. This chapter highlights key components of the data management framework, reviews various smart city applications, and discusses privacy and security challenges associated with smart city data. From the perspective of data frameworks, it is seen that the data used in smart city applications is unstructured coming from heterogeneous sources, i.e., sensors and social media, besides others. Therefore, the collection, processing, analysis, management, and visualization of such data are challenging. To perform these tasks, recent technologies, i.e., Internet of Things (IoT), sensor networks, machine learning, etc., have been used. Moreover, the use of smart data for smart government and governance provides several facilities for the public and business. The smart data is revolutionizing the daily communication of users along with their mode of transportation by introducing Social IoT (SIoT) and autonomous vehicles. Lastly, the challenges related to privacy and security of the data in smart cities that needed to be addressed are highlighted. This chapter will guide academics and enterprises to progress in data management framework and its applications in smart cities in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Alam, M., Ferreira, J., & Fonseca, J. (2016). Introduction to intelligent transportation systems. Intelligent Transportation Systems, 1–17.

    Google Scholar 

  • Aldairi, A., & Tawalbeh, L. (2017). Cyber security attacks on smart cities and associated Mobile technologies. Procedia Computer Science, 109(2016), 1086–1091.

    Google Scholar 

  • Allwinkle, S., & Cruickshank, P. (2011). Creating smart-er cities: An overview. Journal of Urban Technology, 18(2), 1–16.

    Google Scholar 

  • Amin, H. A. M., Alkabani, Y., & Selim, G. M. I. (2014). System-level protection and hardware Trojan detection using weighted voting. Journal of Advanced Research, 5(4), 499–505.

    Google Scholar 

  • Appio, F. P., Lima, M., & Paroutis, S. (2019). Understanding smart cities: Innovation ecosystems, technological advancements, and societal challenges. Technological Forecasting and Social Change, 142(xxxx), 1–14.

    Google Scholar 

  • Augusto, J. C., Callaghan, V., Cook, D., Kameas, A., & Satoh, I. (2013). Intelligent environments: a manifesto. Human-Centric Computing and Information Science, 3(1), 12.

    Google Scholar 

  • Axelsson, K., & Granath, M. (2018). Stakeholders’ stake and relation to smartness in smart city development: Insights from a Swedish city planning project. Government Information Quarterly, 35(4), 693–702.

    Google Scholar 

  • Azri, S., Ujang, U., & Abdul Rahman, A. (2019). 3D geo-clustering for wireless sensor network in smart city. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences – ISPRS Archives, 42(4/W12), 11–16.

    Google Scholar 

  • Bagretsov, G. I., Shindarev, N. A., Abramov, M. V., & Tulupyeva, T. V. (2017). Approaches to development of models for text analysis of information in social network profiles in order to evaluate user’s vulnerabilities profile. In 2017 XX IEEE international conference on soft computing and measurements (SCM), pp. 93–95.

    Google Scholar 

  • Baig, Z. A., et al. (2017). Future challenges for smart cities: Cyber-security and digital forensics. Digital Investigation, 22, 3–13.

    Google Scholar 

  • Bakker, S., Maat, K., & van Wee, B. (2014). Stakeholders interests, expectations, and strategies regarding the development and implementation of electric vehicles: The case of the Netherlands. Transportation Research Part A: Policy and Practice, 66, 52–64.

    Google Scholar 

  • Bamman, D., Eisenstein, J., & Schnoebelen, T. (2014). Gender identity and lexical variation in social media. Journal of Sociolinguistics, 18(2), 135–160.

    Google Scholar 

  • Barnaghi, P., Bermudez-Edo, M., & Tönjes, R. (2015). Challenges for quality of data in smart cities. Journal of Data and Information Quality, 6(2–3).

    Google Scholar 

  • Beier, M., & Wagner, K. (2016). Social media adoption: Barriers to the strategic use of social media in SMEs. In Proceedings of the European conference on information systems.

    Google Scholar 

  • Bellido-Outeiriño, F. J., Quiles-Latorre, F. J., Moreno-Moreno, C. D., Flores-Arias, J. M., Moreno-García, I., & Ortiz-López, M. (2016). Streetlight control system based on wireless communication over DALI protocol. Sensors (Switzerland), 5, 16.

    Google Scholar 

  • Ben Sta, H. (2017). Quality and the efficiency of data in ‘smart-cities’. Future Generation Computer Systems, 74, 409–416.

    Google Scholar 

  • Bendoly, E. (2016). Fit, bias, and enacted sense making in data visualization: Frameworks for continuous development in operations and supply chain management analytics. Journal of Business Logistics, 37(1), 6–17.

    Google Scholar 

  • Berrone, P., Ricart, J. E., Carraso, C., & Ricart, R. (2016). IESE cities in motion index 2016. IESE Business School University of Navarra, 1, 2017.

    Google Scholar 

  • Bibri, S. E. (2018). The IoT for smart sustainable cities of the future: An analytical framework for sensor-based big data applications for environmental sustainability. Sustainable Cities and Society, 38, 230–253.

    Google Scholar 

  • Bilal, M., Gani, A., Marjani, M., & Malik, N. (2019a). A study on detection and monitoring of water quality and flow. In 12th international conference on mathematics, actuarial science, computer science and statistics, MACS 2018 – Proceedings.

    Google Scholar 

  • Bilal, M., Gani, A., Marjani, M., & Malik, N. (2019b). Predicting elections: Social media data and techniques. In 2019 international conference on engineering and emerging technologies (ICEET), pp. 1–6.

    Google Scholar 

  • Bilal, M., Gani, A., Lali, M. I. U., Marjani, M., & Malik, N. (2019c). Social profiling: A review, taxonomy, and challenges. Cyberpsychology, Behavior and Social Networking, 22(7), 433–450.

    Google Scholar 

  • Braun, T., Fung, B. C. M., Iqbal, F., & Shah, B. (2018). Security and privacy challenges in smart cities. Sustainable Cities and Society, 39, 499–507.

    Google Scholar 

  • Bu, F., Wang, X., & Gao, B. (2019). A multi-projection deep computation model for smart data in Internet of Things. Future Generation Computer Systems, 93, 68–76.

    Google Scholar 

  • Cai, H., Da Xu, L., Xu, B., Xie, C., Qin, S., & Jiang, L. (2014). IoT-based configurable information service platform for product lifecycle management. IEEE Transactions on Industrial Informatics, 10(2), 1558–1567.

    Google Scholar 

  • Changbai, C., Jaehyoung, L., Juyeon, H., Insung, J., Minsoo, K., & Hyun, S. J. (2008). SNQL: A query language for sensor network databases. In Proceedings of the 7th WSEAS international conference on telecommunications and informatics (WSEAS), pp. 114–119.

    Google Scholar 

  • Chatterjee, S., Kar, A. K., & Gupta, M. P. (2018). Success of IoT in smart cities of India: An empirical analysis. Government Information Quarterly, 35(3), 349–361.

    Google Scholar 

  • Chen, F. (2016). How to integrate social media in IS curriculum, especially for a small IS program? In Proceedings of the Americas conference on information systems.

    Google Scholar 

  • Cherdantseva, Y., et al. (2016). A review of cyber security risk assessment methods for SCADA systems. Computers & Security, 56, 1–27.

    Google Scholar 

  • Clemons, E. K., Barnett, S., & Appadurai, A. (2007). The future of advertising and the value of social network websites. In Proceedings of the ninth international conference on electronic commerce, p. 267.

    Google Scholar 

  • Collotta, M., & Pau, G. (2015). A novel energy management approach for smart homes using Bluetooth low energy. IEEE Journal on Selected Areas in Communications, 33(12), 2988–2996.

    Google Scholar 

  • Crowther, J., Herzig, C., & Feller, G. (2012). The time is right for connected public lighting within smart cities. Philips and Cisco Internet Business Solutions Group (IBSG).

    Google Scholar 

  • Daher, M., Diab, A., El Badaoui El Najjar, M., Ali Khalil, M., & Charpillet, F. (2017). Elder tracking and fall detection system using smart tiles. IEEE Sensors Journal, 17(2), 469–479.

    Google Scholar 

  • de Bruijn, H., & Janssen, M. (2017). Building cybersecurity awareness: The need for evidence-based framing strategies. Government Information Quarterly, 34(1), 1–7.

    Google Scholar 

  • Dekkers, G. et al. (2017). The SINS database for detection of daily activities in a home environment using an acoustic sensor network. In Proceedings of the detection and classification of acoustic scenes and events 2017 workshop (DCASE2017), pp. 32–36.

    Google Scholar 

  • Deren, L., JianJun, C., & Yuan, Y. (2015). Big data in smart cities. Science China-Information Sciences, 58(10).

    Google Scholar 

  • Diakaki, C., Papageorgiou, M., Papamichail, I., & Nikolos, I. (2015). Overview and analysis of vehicle automation and communication systems from a motorway traffic management perspective. Transportation Research Part A: Policy and Practice, 75, 147–165.

    Google Scholar 

  • Docherty, I., Marsden, G., & Anable, J. (2018). The governance of smart mobility. Transportation Research Part A: Policy and Practice, 115, 114–125.

    Google Scholar 

  • Eirinaki, M., Gao, J., Varlamis, I., & Tserpes, K. (2018). Recommender systems for large-scale social networks: A review of challenges and solutions. Future Generation Computer Systems, 78, 413–418.

    Google Scholar 

  • Elmaghraby, A. S., & Losavio, M. M. (2014). Cyber security challenges in smart cities: Safety, security and privacy. Journal of Advanced Research, 5(4), 491–497.

    Google Scholar 

  • Fagnant, D. J., & Kockelman, K. (2015). Preparing a nation for autonomous vehicles: Opportunities, barriers and policy recommendations. Transportation Research Part A: Policy and Practice, 77, 167–181.

    Google Scholar 

  • Falk, H. (2011). Applications, architectures, and protocol design issues for mobile social networks: A survey. Proceedings of the IEEE, 99(12), 2125–2129.

    Google Scholar 

  • Fire, M., Tenenboim-Chekina, L., Puzis, R., Lesser, O., Rokach, L., & Elovici, Y. (2013). Computationally efficient link prediction in a variety of social networks. ACM Transactions on Intelligent Systems and Technology, 5(1), 10.

    Google Scholar 

  • Galbrun, E., Pelechrinis, K., & Terzi, E. (2016). Urban navigation beyond shortest route: The case of safe paths. Information Systems, 57, 160–171.

    Google Scholar 

  • Gandomi, A., & Haider, M. (2015). Beyond the hype: Big data concepts, methods, and analytics. International Journal of Information Management, 35(2), 137–144.

    Google Scholar 

  • Geels, F. W. (2012). A socio-technical analysis of low-carbon transitions: Introducing the multi-level perspective into transport studies. Journal of Transport Geography, 24, 471–482.

    Google Scholar 

  • Gharaibeh, A., et al. (2017). Smart cities: A survey on data management, security, and enabling technologies. IEEE Communication Surveys and Tutorials, 19(4), 2456–2501.

    Google Scholar 

  • Gil-Garcia, J., Zhang, J., & Puron-Cid, G. (2016). Conceptualizing smartness in government: An integrative and multi-dimensional view. Government Information Quarterly, 33, 524. Elsevier.

    Google Scholar 

  • Guenduez, A. A., Mettler, T., & Schedler, K. (2017). Smart government – Participation and empowerment of bidders in the age of Big data and personalized algorithms. HMD Prax der Wirtschaftsinformatik, 54(4), 477–487.

    Google Scholar 

  • Guenduez, A. A., Singler, S., Tomczak, T., Schedler, K., & Oberli, M. (2018). Smart Government Success Factors. Yearbook of Swiss Administrative Sciences, 9(1), 96–110.

    Google Scholar 

  • Guenduez, A. A., Mettler, T., Schedler, K., Ramon, G. G. J., Pardo, T. A., & Mila, G. (2019). Beyond smart and connected governments: Sensors and the Internet of Things in the public sector. Springer.

    Google Scholar 

  • Habibzadeh, H., Soyata, T., Kantarci, B., Boukerche, A., & Kaptan, C. (2018a). Sensing, communication and security planes: A new challenge for a smart city system design. Computer Networks, 144, 163–200.

    Google Scholar 

  • Habibzadeh, H., Boggio-Dandry, A., Qin, Z., Soyata, T., Kantarci, B., & Mouftah, H. T. (2018b). Soft sensing in smart cities: Handling 3Vs using recommender systems, machine intelligence, and data analytics. IEEE Communications Magazine.

    Google Scholar 

  • Habibzadeh, H., Nussbaum, B. H., Anjomshoa, F., Kantarci, B., & Soyata, T. (2019). A survey on cybersecurity, data privacy, and policy issues in cyber-physical system deployments in smart cities. Sustainable Cities and Society, 50, 101660.

    Google Scholar 

  • Harsh, A., & Ichalkaranje, N. (2015). Transforming e-government to smart government: A South Australian perspective. In Intelligent computing, communication and devices (pp. 9–16). Springer, New Delhi.

    Google Scholar 

  • Hashem, I. A. T., et al. (2016). The role of big data in smart city. International Journal of Information Management, 36(5), 748–758.

    Google Scholar 

  • Hermida, A., Fletcher, F., Korell, D., & Logan, D. (2012). Share, like, recommend: Decoding the social media news consumer. Journalism Studies, 13(5–6), 815–824.

    Google Scholar 

  • Hollands, R. G. (2008). Will the real smart city please stand up? Intelligent, progressive or entrepreneurial? City, 12(3), 303–320. https://doi.org/10.1080/13604810802479126

  • Honarvar, A. R., & Sami, A. (2019). Towards sustainable smart city by particulate matter prediction using urban big data, excluding expensive air pollution infrastructures. Big data research, 17, 56–65.

    Google Scholar 

  • Ijaz, S., Shah, M. A., Khan, A., & Ahmed, M. (2016). Smart cities: A survey on security concerns. International Journal of Advanced Computer Science and Applications, 7(2), 612–625.

    Google Scholar 

  • Jain, A., & Nagarajan, C. (2016). Efficient control algorithm for a smart solar street light. In Proceedings – NGMAST 2015 9th International Conference Next Generation Mobile Applications, Services and Technologie, pp. 376–381.

    Google Scholar 

  • Jamali, M., & Ester, M. (2010). A matrix factorization technique with trust propagation for recommendation in social networks. In Proceedings of the fourth ACM conference on recommender systems, pp. 135–142.

    Google Scholar 

  • Jameel, F., Wyne, S., Jayakody, D. N. K., Kaddoum, G., & O’Kennedy, R. (2018). Wireless social networks: A survey of recent advances, applications and challenges. IEEE Access, 6, 59589–59617.

    Google Scholar 

  • Jiang, F., Leung, C. K., & Pazdor, A. G. M. (2016). Big data mining of social networks for friend recommendation. In Proceedings of the 2016 IEEE/ACM international conference on advances in social networks analysis and mining, pp. 921–922.

    Google Scholar 

  • Jones, S., Hara, S., & Augusto, J. C. (2015). eFRIEND: An ethical framework for intelligent environments development. Ethics and Information Technology, 17(1), 11–25.

    Google Scholar 

  • Kankanhalli, A., Charalabidis, Y., & Mellouli, S. (2019). IoT and AI for smart government: A research agenda. Government Information Quarterly, 36(2), 304–309.

    Google Scholar 

  • Kendall, L., Hartzler, A., Klasnja, P., & Pratt, W. (2011). Descriptive analysis of physical activity conversations on Twitter. In CHI’11 extended abstracts on human factors in computing systems, pp. 1555–1560.

    Google Scholar 

  • Khatoun, R. (2017). Cybersecurity and privacy solutions in smart cities. IEEE Communications Magazine, 55(3), 51–59, 3AD.

    Google Scholar 

  • Khokhar, R. H., Fung, B. C. M., Iqbal, F., Alhadidi, D., & Bentahar, J. (2016). Privacy-preserving data mashup model for trading person-specific information. Electronic Commerce Research and Applications, 17, 19–37.

    Google Scholar 

  • Kim, S.-N., Choo, S., & Mokhtarian, P. L. (2015). Home-based telecommuting and intra-household interactions in work and non-work travel: A seemingly unrelated censored regression approach. Transportation Research Part A: Policy and Practice, 80, 197–214.

    Google Scholar 

  • Kliksberg, B. (2000). Rebuilding the state for social development: Towards ‘smart government’. International Review of Administrative Sciences.

    Google Scholar 

  • Kosinski, M., Stillwell, D., & Graepel, T. (2013). Private traits and attributes are predictable from digital records of human behavior. Proceedings of the National Academy of Sciences, 110(15), 5802–5805.

    Google Scholar 

  • Kranz, M., Roalter, L., & Michahelles, F. (2010) Things that twitter: Social networks and the Internet of Things. In What can the Internet of Things do for the Citizen (CIoT) workshop at the eighth international conference on pervasive computing (Pervasive 2010), pp. 1–10.

    Google Scholar 

  • Krieg, J.-G., Jakllari, G., Toma, H., & Beylot, A.-L. (2018). Unlocking the smartphone’s sensors for smart city parking. Pervasive and Mobile Computing, 43, 78–95.

    Google Scholar 

  • Küçükkeçeci, C., & Yazıcı, A. (2018). Big data model simulation on a graph database for surveillance in wireless multimedia sensor networks. Big Data Research, 11, 33–43.

    Google Scholar 

  • Kumar, R., Novak, J., & Tomkins, A. (2010). Structure and evolution of online social networks. In: Yu, P., Han, J., & Faloutsos, C. (eds) Link Mining: Models, Algorithms, and Applications. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6515-8_13.

  • Kuosa, T. (2016). The evolution of strategic foresight: Navigating public policy making. London: Routledge.

    Google Scholar 

  • Lacinák, M., & Ristvej, J. (2017). Smart city, safety and security. Procedia Engineering, 192, 522–527.

    Google Scholar 

  • Lee, J. H., Hancock, M. G., & Hu, M. C. (2014). Towards an effective framework for building smart cities: Lessons from Seoul and San Francisco. Technological Forecasting and Social Change, 89, 80–99.

    Google Scholar 

  • Lee, J., Bagheri, B., & Kao, H.-A. (2015). A cyber-physical systems architecture for industry 4.0-based manufacturing systems. Manufacturing Letters, 3, 18–23.

    Google Scholar 

  • Levin, M. W., & Boyles, S. D. (2016). A multiclass cell transmission model for shared human and autonomous vehicle roads. Transportation Research Part C: Emerging Technologies, 62, 103–116.

    Google Scholar 

  • Li, D., Wang, S., Shi, W., & Wang, X. (2001). On spatial data mining and knowledge discovery (SDMKD). Wuhan Daxue Xuebao (Xinxi Kexue Ban)/Geomatics and Information Science of Wuhan University, 26(6), 491–499.

    Google Scholar 

  • Lim, C., Kim, K. J., & Maglio, P. P. (2018). Smart cities with big data: Reference models, challenges, and considerations. Cities, 82, 86–99.

    Google Scholar 

  • Luo, Q., & Wu, H. (2007). System design issues in sensor databases. In Proceedings of the 2007 ACM SIGMOD international conference on management of data, p. 1182.

    Google Scholar 

  • Malandra, F., Chiquette, L.-O., Lafontaine-Bédard, L.-P., & Sansò, B. (2018). Traffic characterization and LTE performance analysis for M2M communications in smart cities. Pervasive and Mobile Computing, 48, 59–68.

    Google Scholar 

  • Martinez-Balleste, A., Perez-Martinez, P., & Solanas, A. (2013). The pursuit of citizens’ privacy: A privacy-aware smart city is possible. IEEE Communications Magazine, 51(6), 136–141.

    Google Scholar 

  • McNaull, J., Augusto, J. C., Mulvenna, M., & McCullagh, P. (2012). Data and information quality issues in ambient assisted living systems. Journal of Data and Information Quality, 4(1).

    Google Scholar 

  • Meijer, A., & Thaens, M. (2018). Quantified street: Smart governance of urban safety. Information Polity, 23(1), 29–41.

    Google Scholar 

  • Meijer, A., Pedro, M., & Bolívar, R. (2016). Governing the smart city: A review of the literature on smart urban governance. International Review of Administrative Sciences, 82(2), 392–408.

    Google Scholar 

  • Mellouli, S., Luna-Reyes, L. F., & Zhang, J. (2014). Smart government, citizen participation and open data. Information Polity, 19(1, 2), 1–4.

    Google Scholar 

  • Menouar, H., Guvenc, I., Akkaya, K., Uluagac, A. S., Kadri, A., & Tuncer, A. (2017). UAV-enabled intelligent transportation systems for the smart city: Applications and challenges. IEEE Communications Magazine, 55, 22–28.

    Google Scholar 

  • Mettler, T. (2019). The road to digital and smart government in switzerland. In Swiss Public Administration (pp. 175–186). Palgrave Macmillan, Cham.

    Google Scholar 

  • Moglia, M., et al. (2018). Urban transformation stories for the 21st century: Insights from strategic conversations. Global Environmental Change, 50, 222–237.

    Google Scholar 

  • Mydlarz, C., Salamon, J., & Bello, J. P. (2017). The implementation of low-cost urban acoustic monitoring devices. Applied Acoustics, 117, 207–218.

    Google Scholar 

  • Nam, T., & Pardo, T. A. (2014). The changing face of a city government: A case study of Philly311. Government Information Quarterly, 31, S1–S9.

    Google Scholar 

  • Nawaz, M. S., Bilal, M., Lali, M. I., Ul Mustafa, R., Aslam, W., & Jajja, S. (2017). Effectiveness of social media data in healthcare communication. Journal of Medical Imaging and Health Informatics, 7(6), 1365–1371.

    Google Scholar 

  • Ning, Z., Liu, Y., Zhang, J., & Wang, X. (2017). Rising star forecasting based on social network analysis. IEEE Access, 5, 24229–24238.

    Google Scholar 

  • Ortiz, A. M., Hussein, D., Park, S., Han, S. N., & Crespi, N. (2014). The cluster between Internet of Things and social networks: Review and research challenges. IEEE Internet of Things Journal, 1(3), 206–215.

    Google Scholar 

  • Osman, A. M. S. (2019). A novel big data analytics framework for smart cities. Future Generation Computer Systems, 91, 620–633.

    Google Scholar 

  • Otte, E., & Rousseau, R. (2002). Social network analysis: A powerful strategy, also for the information sciences. Journal of Information Science, 28(6), 441–453.

    Google Scholar 

  • Pan, Y., Tian, Y., Liu, X., Gu, D., & Hua, G. (2016). Urban Big data and the development of city intelligence. Engineering, 2(2), 171–178.

    Google Scholar 

  • Pang, B., & Lee, L. (2008). Opinion mining and sentiment analysis. Foundations and Trends in Information Retrieval, 2(1–2), 1–135.

    Google Scholar 

  • Paola, D. R., & Rosenthal-Sabroux, C. (2014). Smart City how to create public and economic value with high Technology in Urban Space. Cham: Springer.

    Google Scholar 

  • Pereira, G. V., Parycek, P., Falco, E., & Kleinhans, R. (2018). Smart governance in the context of smart cities: A literature review. Information Polity, 23(2), 143–162.

    Google Scholar 

  • Plageras, A. P., Psannis, K. E., Stergiou, C., Wang, H., & Gupta, B. B. (2018). Efficient IoT-based sensor Big data collection–processing and analysis in smart buildings. Future Generation Computer Systems, 82, 349–357.

    Google Scholar 

  • Praharaj, S., Hoon Han, J., & Hawken, S. (2018). TOWARDS THE RIGHT MODEL OF SMART CITY GOVERNANCE IN INDIA. International Journal of Sustainable Development and Planning, 13(2), 171–186.

    Google Scholar 

  • Qin, Z., Cai, J., & Wangchen, H. Z. (2015). How rumors spread and stop over social media: A multi-layered communication model and empirical analysis. Communications of the Association for Information Systems, 36, 20.

    Google Scholar 

  • Rahim, A., et al. (2018). Vehicular social networks: A survey. Pervasive and Mobile Computing, 43, 96–113.

    Google Scholar 

  • Rathore, M. M., Ahmad, A., Paul, A., & Rho, S. (2016). Urban planning and building smart cities based on the Internet of Things using Big data analytics. Computer Networks, 101, 63–80.

    Google Scholar 

  • Ruhlandt, R. W. S. (2018). The governance of smart cities: A systematic literature review. Cities, 81, 1–23.

    Google Scholar 

  • Salas Mccluskey, C. P. (1988). A linked Forest manipulation system syntax rules for an attributed translation grammar for PL/0. International Journal of Computer Mathematics, 23(3–4), 201–235.

    MATH  Google Scholar 

  • Salim, F., & Haque, U. (2015). Urban computing in the wild: A survey on large scale participation and citizen engagement with ubiquitous computing, cyber physical systems, and Internet of Things. International Journal of Human Computer Studies, 81, 31–48.

    Google Scholar 

  • Sannino, G., & De Pietro, G. (2018). A deep learning approach for ECG-based heartbeat classification for arrhythmia detection. Future Generation Computer Systems, 86, 446–455.

    Google Scholar 

  • Schedler, K. (2018). From electronic government and smart government. IMPuls, 1(1). ISSN 2624-585X. https://imp.unisg.ch/-/media/dateien/instituteundcenters/imp/imp-publikationen/impuls/impuls-ausgabe-01-2018_final.pdf.

  • Schedler, K., & Proeller, I. (2010). Outcome-oriented public management: A responsibility-based approach to the new public management. Charlotte: Information Age Publishing.

    Google Scholar 

  • Schedler, K., Summermatter, L., & Schmidt, B. (2004). Managing the electronic government: From vision to practice. Greenwich: Information Age Publishing.

    Google Scholar 

  • Schedler, K., Guenduez, A. A., & Frischknecht, R. (2017). How smart can government be? In IPMN Conference 2017. Shanghai Jiaotong University China, pp. 1–17.

    Google Scholar 

  • Scholl, H. J., & Alawadhi, S. (2016). Smart governance as key to multi-jurisdictional smart city initiatives: The case of the eCityGov Alliance. Social Science Information, 55(2), 255–277.

    Google Scholar 

  • Scholl, H. J., & Scholl, M. C. (2014). Smart governance: A roadmap for research and practice. In IConference 2014 proceedings.

    Google Scholar 

  • Schulz, A., Guckelsberger, C., & Janssen, F. (2017). Semantic abstraction for generalization of tweet classification: An evaluation of incident-related tweets. Semantic Web, 8(3), 353–372.

    Google Scholar 

  • Schurgot, M. R., Comaniciu, C., & Jaffres-Runser, K. (2012). Beyond traditional DTN routing: social networks for opportunistic communication. IEEE Communications Magazine, 50(7), 155–162.

    Google Scholar 

  • Shen, Y., Chan, H. C., & Heng, C. S. (2016) The medium matters: Effects on what consumers talk about regarding movie trailers. In Proceedings of the international conference on information systems.

    Google Scholar 

  • Sheu, M. H., Chang, L. H., Hsia, S. C., & Sun, C. C. (2016). Intelligent system design for variable color temperature LED street light. In 2016 IEEE international conference on consumer electronics-Taiwan (ICCE-TW), pp. 7–8.

    Google Scholar 

  • Silva, B. N., Khan, M., & Han, K. (2018). Towards sustainable smart cities: A review of trends, architectures, components, and open challenges in smart cities. Sustainable Cities and Society, 38, 697–713.

    Google Scholar 

  • Stieglitz, S., & Dang-Xuan, L. (2013). Social media and political communication: A social media analytics framework. Social Network Analysis and Mining, 3(4), 1277–1291.

    Google Scholar 

  • Stieglitz, S., Bunker, D., Mirbabaie, M., & Ehnis, C. (2018). Sense-making in social media during extreme events. Journal of Contingencies & Crisis Management, 26(1), 4–15.

    Google Scholar 

  • Sudha, C., & Nagesh, A. (2018). A comprehensive survey on data mining techniques in wireless sensor networks. International Journal of Computational Science and Engineering, 6(6), 1523–1527.

    Google Scholar 

  • Tan, C., Lee, L., Tang, J., Jiang, L., Zhou, M., & Li, P. (2011). User-level sentiment analysis incorporating social networks. In Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 1397–1405).

    Google Scholar 

  • Tang, J., Gao, H., & Liu, H. (2012). mTrust: Discerning multi-faceted trust in a connected world. In Proceedings of the fifth ACM international conference on web search and data mining, pp. 93–102.

    Google Scholar 

  • Team, I. P. (2017). EU General Data Protection Regulation (GDPR). IT Governance Limited.

    Google Scholar 

  • Thakuriah, P. V., Tilahun, N., & Zellner, M. (2016). Seeing cities through big data: Research, methods and applications in urban informatics. Cham: Springer.

    Google Scholar 

  • Thangavel, G., Memedi, M., & Hedström, K. (2019). A systematic review of social Internet of Things: Concepts and application areas. In The annual Americas conference on information systems (AMCIS).

    Google Scholar 

  • Toole, J. L., Colak, S., Sturt, B., Alexander, L. P., Evsukoff, A., & González, M. C. (2015). The path most traveled: Travel demand estimation using big data resources. Transportation Research Part C: Emerging Technologies, 58, 162–177.

    Google Scholar 

  • Townsend, A. M. (2013). Smart cities: Big data, civic hackers, and the quest for a new utopia. WW Norton & Company, New York.

    Google Scholar 

  • Trautman, L. J. L., & Ormerod, P. C. (2017). Corporate directors’ and officers’ cybersecurity standard of care: The yahoo data breach. The American University Law Review, 66.

    Google Scholar 

  • Tsiftes, N., & Dunkels, A. (2011). A database in every sensor. In Proceedings of the 9th ACM conference on embedded networked sensor systems, p. 316.

    Google Scholar 

  • Valls, F., Redondo, E., Fonseca, D., Torres-Kompen, R., Villagrasa, S., & Martí, N. (2018). Urban data and urban design: A data mining approach to architecture education. Telematics and Informatics, 35(4), 1039–1052.

    Google Scholar 

  • van Zoonen, L. (2016). Privacy concerns in smart cities. Government Information Quarterly, 33(3), 472–480.

    Google Scholar 

  • Viale Pereira, G., Cunha, M. A., Lampoltshammer, T. J., Parycek, P., & Testa, M. G. (2017). Increasing collaboration and participation in smart city governance: A cross-case analysis of smart city initiatives. Information Technology for Development.

    Google Scholar 

  • Vojkovic, G. (2018). Will the GDPR slow down development of smart cities? In 2018 41st international convention on information and communication technology, electronics and microelectronics, MIPRO 2018 – Proceedings.

    Google Scholar 

  • Von Lucke, J. (2016). Germany on the way to smart government. VM Administration Management, 22(4), 171–186.

    Google Scholar 

  • Vosecky, J., Jiang, D., & Ng, W. (2013). Limosa: A system for geographic user interest analysis in twitter. In Proceedings of the 16th international conference on extending database technology, pp. 709–712.

    Google Scholar 

  • Wadud, Z., MacKenzie, D., & Leiby, P. (2016). Help or hindrance? The travel, energy and carbon impacts of highly automated vehicles. Transportation Research Part A: Policy and Practice, 86, 1–18.

    Google Scholar 

  • Wasserman, S., & Faust, K. (1994). Social network analysis: Methods and applications (Vol. 8). Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Wei, L., Ding, Y., Su, R., Tang, J., & Zou, Q. (2018). Prediction of human protein subcellular localization using deep learning. Journal of Parallel and Distributed Computing, 117, 212–217.

    Google Scholar 

  • Wendling, C., Radisch, J., & Jacobzone, S. (2013). The use of social media in risk and crisis communication (OECD working papers on public governance). Paris: OECD.

    Google Scholar 

  • White, C. (2001, September). IBM enterprise analytics for the intelligent e-business.

    Google Scholar 

  • Wockatz, P., & Schartau, P. (2015). IM traveller needs and UK capability study: Supporting the realisation of intelligent mobility in the UK. Milton Keynes: Transport Systems Catapult.

    Google Scholar 

  • Yao, C., Wu, S., Liu, Z., & Li, P. (2019). A deep learning model for predicting chemical composition of gallstones with big data in medical Internet of Things. Future Generation Computer Systems, 94, 140–147.

    Google Scholar 

  • Yaqoob, I., Hashem, I. A. T., Mehmood, Y., Gani, A., Mokhtar, S., & Guizani, S. (2017). Enabling communication technologies for smart cities. IEEE Communications Magazine, 55(1), 112–120.

    Google Scholar 

  • Yong Yao, J. G. (2012). Query processing for sensor networks. Wireless Communications, 4(1), 19–25.

    Google Scholar 

  • Zeng, E., Mare, S., Roesner, F., & Allen, P. G. (2017) End user security and privacy concerns with smart homes. In Proceedings of the thirteenth symposium on usable privacy and security (SOUPS 2017). Soups.

    Google Scholar 

  • Zhang, J., Shan, Y., & Huang, K. (2015). ISEE Smart Home (ISH): Smart video analysis for home security. Neurocomputing, 149, 752–766, no. PB.

    Google Scholar 

  • Zhang, S., Zhao, L., Lu, Y., & Yang, J. (2016). Do you get tired of socializing? An empirical explanation of discontinuous usage behaviour in social network services. Information and Management, 53(7), 904–914.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muhammad Bilal or Ibrahim Abaker Targio Hashem .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Bilal, M. et al. (2020). Smart Cities Data: Framework, Applications, and Challenges. In: Augusto, J. (eds) Handbook of Smart Cities. Springer, Cham. https://doi.org/10.1007/978-3-030-15145-4_6-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-15145-4_6-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-15145-4

  • Online ISBN: 978-3-030-15145-4

  • eBook Packages: Living Reference Computer SciencesReference Module Computer Science and Engineering

Publish with us

Policies and ethics