Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Context-Aware Dual-Attention Network for Natural Language Inference

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11441))

Included in the following conference series:

Abstract

Natural Language Inference (NLI) is a fundamental task in natural language understanding. In spite of the importance of existing research on NLI, the problem of how to exploit the contexts of sentences for more precisely capturing the inference relations (i.e. by addressing the issues such as polysemy and ambiguity) is still much open. In this paper, we introduce the corresponding image into inference process. Along this line, we design a novel Context-Aware Dual-Attention Network (CADAN) for tackling NLI task. To be specific, we first utilize the corresponding images as the Image Attention to construct an enriched representation for sentences. Then, we use the enriched representation as the Sentence Attention to analyze the inference relations from detailed perspectives. Finally, a sentence matching method is designed to determine the inference relation in sentence pairs. Experimental results on large-scale NLI corpora and real-world NLI alike corpus demonstrate the superior effectiveness of our CADAN model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://en.wikipedia.org/wiki/I,_Robot_(film).

  2. 2.

    Yunnan Baiyao is a kind of healing spray.

References

  1. Altmann, G., Steedman, M.: Interaction with context during human sentence processing. Cognition 30(3), 191–238 (1988)

    Article  Google Scholar 

  2. Bowman, S.R., Angeli, G., Potts, C., Manning, C.D.: A large annotated corpus for learning natural language inference. In: EMNLP (2015)

    Google Scholar 

  3. Chen, Q., Zhu, X., Ling, Z.H., Wei, S., Jiang, H., Inkpen, D.: Recurrent neural network-based sentence encoder with gated attention for natural language inference. arXiv preprint arXiv:1708.01353 (2017)

  4. Chen, Q., Zhu, X., Ling, Z., Wei, S., Jiang, H., Inkpen, D.: Enhanced LSTM for natural language inference. In: ACL. ACL, Vancouver, July 2017

    Google Scholar 

  5. Cheng, J., Dong, L., Lapata, M.: Long short-term memory-networks for machine reading. In: EMNLP (2016)

    Google Scholar 

  6. Cho, K., Courville, A.C., Bengio, Y.: Describing multimedia content using attention-based encoder-decoder networks. IEEE Trans. Multimed. 17, 1875–1886 (2015)

    Article  Google Scholar 

  7. Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. CoRR abs/1412.3555 (2014)

    Google Scholar 

  8. Gururangan, S., Swayamdipta, S., Levy, O., Schwartz, R., Bowman, S.R., Smith, N.A.: Annotation artifacts in natural language inference data. arXiv preprint arXiv:1803.02324 (2018)

  9. Huang, Z., et al.: Question difficulty prediction for READING problems in standard tests. In: AAAI (2017)

    Google Scholar 

  10. Karpathy, A., Fei-Fei, L.: Deep visual-semantic alignments for generating image descriptions. In: CVPR, pp. 3128–3137 (2015)

    Google Scholar 

  11. Khot, T., Sabharwal, A., Clark, P.: SciTail: a textual entailment dataset from science question answering. In: AAAI (2018)

    Google Scholar 

  12. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. CoRR abs/1312.6114 (2013)

    Google Scholar 

  13. Klein, B., Lev, G., Sadeh, G., Wolf, L.: Associating neural word embeddings with deep image representations using Fisher Vectors. In: CVPR, pp. 4437–4446 (2015)

    Google Scholar 

  14. Kun, Z., Guangyi, L., Le, W., Enhong, C., Qi, L., Han, W.: Image-enhanced multi-level sentence representation net for natural language inference. In: ICDM (2018)

    Google Scholar 

  15. Lai, A., Bisk, Y., Hockenmaier, J.: Natural language inference from multiple premises. In: IJCNLP (2017)

    Google Scholar 

  16. Liu, Y., Sun, C., Lin, L., Wang, X.: Learning natural language inference using bidirectional LSTM model and inner-attention. CoRR abs/1605.09090 (2016)

    Google Scholar 

  17. Lv, G., Xu, T., Chen, E., Liu, Q., Zheng, Y.: Reading the videos: temporal labeling for crowdsourced time-sync videos based on semantic embedding. In: AAAI (2016)

    Google Scholar 

  18. Ma, L., Lu, Z., Shang, L., Li, H.: Multimodal convolutional neural networks for matching image and sentence. In: ICCV, pp. 2623–2631 (2015)

    Google Scholar 

  19. MacCartney, B.: Natural Language Inference. Stanford University, Stanford (2009)

    Google Scholar 

  20. Mao, J., Xu, W., Yang, Y., Wang, J., Yuille, A.L.: Deep captioning with multimodal recurrent neural networks (m-RNN). CoRR abs/1412.6632 (2014)

    Google Scholar 

  21. Mou, L., et al.: Natural language inference by tree-based convolution and heuristic matching. In: ACL (2016)

    Google Scholar 

  22. Munkhdalai, T., Yu, H.: Neural tree indexers for text understanding. CoRR abs/1607.04492 (2016)

    Google Scholar 

  23. Orr, G.B., Müller, K.R.: Neural Networks: Tricks of the Trade. Springer, Heidelberg (2003)

    Google Scholar 

  24. Pan, Y., Mei, T., Yao, T., Li, H., Rui, Y.: Jointly modeling embedding and translation to bridge video and language. In: CVPR, pp. 4594–4602 (2016)

    Google Scholar 

  25. Parikh, A.P., Täckström, O., Das, D., Uszkoreit, J.: A decomposable attention model for natural language inference. In: EMNLP (2016)

    Google Scholar 

  26. Pennington, J., Socher, R., Manning, C.: GloVe: global vectors for word representation. In: EMNLP, pp. 1532–1543 (2014)

    Google Scholar 

  27. Clark, P., et al.: Combining retrieval, statistics, and inference to answer elementary science questions. In: AAAI (2016)

    Google Scholar 

  28. Ren, M., Kiros, R., Zemel, R.S.: Exploring models and data for image question answering. In: NIPS (2015)

    Google Scholar 

  29. Rocktäschel, T., Grefenstette, E., Hermann, K.M., Kociský, T., Blunsom, P.: Reasoning about entailment with neural attention. CoRR abs/1509.06664 (2015)

    Google Scholar 

  30. Ruder, S.: An overview of gradient descent optimization algorithms. CoRR abs/1609.04747 (2016)

    Google Scholar 

  31. Rush, A.M., Chopra, S., Weston, J.: A neural attention model for abstractive sentence summarization. In: EMNLP (2015)

    Google Scholar 

  32. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR abs/1409.1556 (2014)

    Google Scholar 

  33. Vinyals, O., Toshev, A., Bengio, S., Erhan, D.: Show and tell: a neural image caption generator. In: CVPR, pp. 3156–3164 (2015)

    Google Scholar 

  34. Wang, S., Jiang, J.: Learning natural language inference with LSTM. In: HLT-NAACL (2016)

    Google Scholar 

  35. Weeds, J., Clarke, D., Reffin, J., Weir, D.J., Keller, B.: Learning to distinguish hypernyms and co-hyponyms. In: COLING, pp. 2249–2259 (2014)

    Google Scholar 

  36. Williams, A., Nangia, N., Bowman, S.R.: A broad-coverage challenge corpus for sentence understanding through inference. CoRR abs/1704.05426 (2017)

    Google Scholar 

  37. Yin, Y., et al.: Transcribing content from structural images with spotlight mechanism. In: KDD (2018)

    Google Scholar 

  38. Zhang, K., Chen, E., Liu, Q., Liu, C., Lv, G.: A context-enriched neural network method for recognizing lexical entailment. In: AAAI (2017)

    Google Scholar 

  39. Zheng, X., Feng, J., Chen, Y., Peng, H., Zhang, W.: Learning context-specific word/character embeddings. In: AAAI (2017)

    Google Scholar 

Download references

Acknowledgements

This research was partially supported by grants from the National Key Research and Development Program of China (No. 2016YFB1000904) and the National Natural Science Foundation of China (Grants No. 61727809, U1605251, 61572540, and 61751202).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enhong Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, K., Lv, G., Chen, E., Wu, L., Liu, Q., Philip Chen, C.L. (2019). Context-Aware Dual-Attention Network for Natural Language Inference. In: Yang, Q., Zhou, ZH., Gong, Z., Zhang, ML., Huang, SJ. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2019. Lecture Notes in Computer Science(), vol 11441. Springer, Cham. https://doi.org/10.1007/978-3-030-16142-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16142-2_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16141-5

  • Online ISBN: 978-3-030-16142-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics