Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Misbehavior Detection in C-ITS Using Deep Learning Approach

  • Conference paper
  • First Online:
Intelligent Systems Design and Applications (ISDA 2018 2018)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 940))

  • 1713 Accesses

Abstract

Cooperative Intelligent Transportation Systems (C-ITS) is one of the most prominent solutions to facilitate many new exciting applications concerning road safety, mobility, environment, and driving comfort. This technology is now on the verge of actual deployments. However, security threats, privacy, and trust management remain the most significant concerns. C-ITS relies highly on node cooperation and trust as vehicles take the decision based on the information received from the roadside network infrastructure. This information should be accurate and reliable to ensure proper functioning of the system. However, the presence of a misbehaving or compromised node in the system can lead to catastrophic results for both safety and traffic efficiency. It is therefore essential to detect misbehavior and defend the C-ITS against it. Although various studies have proposed misbehavior detection at the vehicular plane, the study that explores the machine learning capabilities to detect misbehavior at infrastructure plane is not present. Thus, in this paper, we propose a solution to detect misbehavior at the infrastructure plane of C-ITS that employs the predictive capabilities of Deep Learning. We compare the performance of Multi-Layer Perceptron (MLP) and Long Short-Term Memory (LSTM) models of Deep Neural Network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hsiao, H.C., Studer, A., Dubey, R., Shi, E., Perrig, A.: Efficient and secure threshold-based event validation for VANETs. In: Proceedings of the Fourth ACM Conference on Wireless Network Security, pp. 163–174. ACM (2011)

    Google Scholar 

  2. Rawat, D.B., Bista, B.B., Yan, G., Weigle, M.C.: Securing vehicular ad-hoc networks against malicious drivers: a probabilistic approach. In: International Conference on Complex, Intelligent and Software Intensive Systems (CISIS), pp. 146–151. IEEE (2011)

    Google Scholar 

  3. Leinmüller, T., Schmidt, R.K., Held, A.: Cooperative position verification-defending against roadside attackers 2.0. In: Proceedings of 17th ITS World Congress, pp. 1–8 (2010)

    Google Scholar 

  4. Zhuo, X., Hao, J., Liu, D., Dai, Y.: Removal of misbehaving insiders in anonymous VANETs. In: Proceedings of the 12th ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems, pp. 106–115. ACM (2009)

    Google Scholar 

  5. Bilogrevic, I., Manshaei, M.H., Raya, M., Hubaux, J.P.: Optimal revocations in ephemeral networks: a game-theoretic framework. In: 8th International Symposium on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks (WiOpt), pp. 21–30. IEEE (2010)

    Google Scholar 

  6. Stubing, H., Jaeger, A., Schmidt, C., Huss, S.A.: Verifying mobility data under privacy considerations in Car-to-X communication. In: 17th ITS World CongressITS JapanITS AmericaERTICO (2010)

    Google Scholar 

  7. Stübing, H., Firl, J., Huss, S.A.: A two-stage verification process for Car-to-X mobility data based on path prediction and probabilistic maneuver recognition. In: Vehicular Networking Conference (VNC), pp. 17–24. IEEE (2011)

    Google Scholar 

  8. Grover, J., Laxmi, V., Gaur, M.S.: Misbehavior detection based on ensemble learning in VANET. In: International Conference on Advanced Computing, Networking and Security, pp. 602–611. Springer (2011)

    Google Scholar 

  9. Grover, J., Prajapati, N.K., Laxmi, V., Gaur, M.S.: Machine learning approach for multiple misbehavior detection in VANET. In: International Conference on Advances in Computing and Communications, pp. 644–653. Springer (2011)

    Google Scholar 

  10. van der Heijden, R.W., Dietzel, S., Leinmüller, T., Kargl, F.: Survey on misbehavior detection in cooperative intelligent transportation systems. arXiv preprint arXiv:1610.06810 (2016)

  11. Khan, U., Agrawal, S., Silakari, S.: A detailed survey on misbehavior node detection techniques in vehicular ad hoc networks. In: Information Systems Design and Intelligent Applications, pp. 11–19. Springer (2015)

    Google Scholar 

  12. Hamieh, A., Ben-Othman, J., Mokdad, L.: Detection of radio interference attacks in VANET. In: Global Telecommunications Conference, GLOBECOM 2009, pp. 1–5. IEEE (2009)

    Google Scholar 

  13. Studer, A., Luk, M., Perrig, A.: Efficient mechanisms to provide convoy member and vehicle sequence authentication in VANETs. In: Third International Conference on Security and Privacy in Communications Networks and the Workshops, pp. 422–432. IEEE (2007)

    Google Scholar 

  14. Golle, P., Greene, D., Staddon, J.: Detecting and correcting malicious data in VANETs. In: Proceedings of the 1st ACM International Workshop on Vehicular Ad Hoc Networks, pp. 29–37. ACM (2004)

    Google Scholar 

  15. Ghosh, M., Varghese, A., Gupta, A., Kherani, A.A., Muthaiah, S.N.: Detecting misbehaviors in VANET with integrated root-cause analysis. Ad Hoc Netw. 8(7), 778–790 (2010)

    Article  Google Scholar 

  16. Vulimiri, A., Gupta, A., Roy, P., Muthaiah, S.N., Kherani, A.A.: Application of secondary information for misbehavior detection in VANETs. In: International Conference on Research in Networking, pp. 385–396. Springer (2010)

    Google Scholar 

  17. Loukas, G., Vuong, T., Heartfield, R., Sakellari, G., Yoon, Y., Gan, D.: Cloud-based cyber-physical intrusion detection for vehicles using deep learning. IEEE Access 6, 3491–3508 (2018)

    Article  Google Scholar 

  18. Hasrouny, H., Samhat, A.E., Bassil, C., Laouiti, A.: Vanet security challenges and solutions: a survey. Veh. Commun. 7, 7–20 (2017)

    Google Scholar 

  19. Brecht, B., Therriault, D., Weimerskirch, A., Whyte, W., Kumar, V., Hehn, T., Goudy, R.: A security credential management system for V2X communications. IEEE Trans. Intell. Transp. Syst. 99, 1–22 (2018)

    Google Scholar 

  20. Hornik, K.: Approximation capabilities of multilayer feedforward networks. Neural Netw. 4(2), 251–257 (1991)

    Article  MathSciNet  Google Scholar 

  21. Olah, C.: Understanding LSTM networks. GITHUB blog (2015)

    Google Scholar 

  22. Behrisch, M., Bieker, L., Erdmann, J., Krajzewicz, D.: Sumo-simulation of urban mobility: an overview. In: The Third International Conference on Advances in System Simulation. ThinkMind (2011)

    Google Scholar 

  23. Liang, X., Du, X., Wang, G., Han, Z.: Deep reinforcement learning for traffic light control in vehicular networks. arXiv preprint arXiv:1803.11115 (2018)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pranav Kumar Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Singh, P.K., Dash, M.K., Mittal, P., Nandi, S.K., Nandi, S. (2020). Misbehavior Detection in C-ITS Using Deep Learning Approach. In: Abraham, A., Cherukuri, A.K., Melin, P., Gandhi, N. (eds) Intelligent Systems Design and Applications. ISDA 2018 2018. Advances in Intelligent Systems and Computing, vol 940. Springer, Cham. https://doi.org/10.1007/978-3-030-16657-1_60

Download citation

Publish with us

Policies and ethics