Abstract
Successive-approximation analog-to-digital converters (SA-ADCs) are widely used in ultra-low-power applications. In this paper the power consumption and linearity of SAR ADC are analyzed by using different DAC structures and different SAR Logics. Three types of DAC structures i.e. Capacitive DAC, R-2R resistive DAC, and a CMOS R-2R ladder DAC is employed. Coming to SAR logic, sequential/code register and non-redundant SAR logics are used. Among the all, the CMOS R-2R ladder DAC and non-redundant SAR logic structured SA-ADC is efficient and provides optimum results for all circuit design aspects i.e. power, speed, and area. Along above all designs a dynamic two-stage comparator and the D flip-flops with transmission gates are used due to their energy efficiency and capability of working in low supply voltages.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Wong, L.S., Hossain, S., Ta, A., Edvinsson, J., Rivas, D.H., Naas, H.: A very low-power CMOS mixed-signal IC for implantable pacemaker applications. IEEE J. Solid-State Circuits 39(12), 2446–2456 (2004)
Shahrokhi, F., Abdelhalim, K., Serletis, D., Carlen, P.L., Genov, R.: The 128-channel fully differential digital integrated neural recording and stimulation interface. IEEE Trans. Biomed. Circuits Syst. 4(3), 149–161 (2010)
Kim, S., Lee, S.J., Cho, N.: A fully integrated digital hearing aid chip with human factors considerations. IEEE J. Solid-State Circuits 43(1), 266–274 (2008)
Yangjin, O., Murmann, B.: System embedded ADC calibration for OFDM receivers. IEEE Trans. Circuits Syst. I 53(8), 1693–1703 (2006)
Scott, M.D., Boser, B.E., Pister, K.S.: An ultralow-energy ADC for smart dust. IEEE J. Solid-State Circuits 38(7), 1123–1129 (2003)
Verma, N., Chandrakasan, A.P.: An ultra low energy 12-bit rate-resolution scalable SAR ADC for wireless sensor nodes. IEEE J. Solid-State Circuits 42(6), 1196–1205 (2007)
Gambini, S., Rabaey, J.: Low-power successive approximation converter with 0.5 V supply in 90 nm CMOS. IEEE J. Solid-State Circuits 42(11), 2348–2356 (2007)
Sauerbrey, J., Schmitt-Landsiedel, D., Thewes, R.: A 0.5-V 1-/spl mu/W successive approximation ADC. IEEE J. Solid-State Circuits 38(7), 1261–1265 (2003)
Suarez, E., Gray, P.R., Hodges, D.A.: All-MOS charge redistribution analog-to-digital conversion techniques—Part I. IEEE J. Solid-State Circuits 10(6), 371–379 (1975)
Hong, H., Lee, G.: A 65-fJ/conversion-step 0.9-V 200-kS/s rail-to-rail 8-bit successive approximation ADC. IEEE J. Solid-State Circuits 42(10), 2161–2168 (2007)
Singh, R.R., et al.: Multi-step binary-weighted capacitive digital-toanalog converter architecture. In: Proceedings of IEEE MWSCAS, pp. 470–473, August 2008
Baker, R.J.: CMOS Circuit Design, Layout, and Simulation, 2nd edn. Wiley, New York (2004)
Culurciello, E., Andreou, A.G.: An 8-bit 800-$ muhboxW $1.23-MS/s successive approximation ADC in SOI CMOS. IEEE Trans. Circuits Syst. II: Exp. Briefs 53(9), 858–861 (2006)
Zhu, Y., Chan, C.H., Chio, U.F., Sin, S.W., Seng-Pan, U., Martins, R.P., Maloberti, F.: A 10-bit 100-MS/s reference-free SAR ADC in 90 nm CMOS. IEEE J. Solid-State Circuits 45(6), 1111–1121 (2010)
Zhu, Y., Chio, U., Wei, H., Sin, S., Seng-Pan, U., Martins, R.P.: A power-efficient capacitor structure for high-speed charge recycling SAR ADCs. In: Proceedings of IEEE ICECS, pp. 642–645, September 2008
Ginsburg, B.P., Chandrakasan, A.P.: 500-MS/s 5-bit ADC in 65-nm CMOS with split capacitor array DAC. IEEE J. Solid-State Circuits 42(4), 739–747 (2007)
Ginsburg, B.P., Chandrakasan, A.P.: An energy-efficient charge recycling approach for a SAR converter with capacitive DAC. In: Proceedings of IEEE ISCAS, pp. 184–187, May 2005
Choi, R.Y.-K., Tsui, C.-Y.: A low energy two-step successive approximation algorithm for ADC design. In: Proceedings of IEEE ISQED, pp. 317–320, March 2008
Liew, W.S., et al.: A 1-V 60-μW 16-channel interface chip for implantable neural recording. In: Proceedings of IEEE CICC, pp. 507–510, September 2009
Cong, L.: Pseudo C-2C ladder-based data converter technique. IEEE Trans. Circuits Syst. II 48(10), 927–929 (2001)
Lee, S.-W., Chung, H.-J., Han, C.-H.: C-2C digital-to-analogue converter on insulator. Electron. Lett. 35(15), 1242–1243 (1999)
Kim, H., Min, Y., Kim, Y., Kim, S.: A low power consumption 10-bit rail-to-rail SAR ADC using a C-2C capacitor array. In: Proceedings of IEEE EDSSC, pp. 1–4, December 2008
Xiong, W., Yang, G., Murmann, B., Zschieschang, U., Klauk, H.: A3-V, 6-bit C-2C digital-to-analog converter using complementary organic thin-film transistors on glass. In: Proceedings of IEEE ESSDERC, pp. 229–232, September 2009
Lee, J.S., Park, I.C.: Capacitor array structure and switch control for energy-efficient SAR analog-to-digital converters. In: Proceedings of IEEE ISCAS, pp. 236–239, May 2008
Zhu, Y., et al.: Linearity analysis on a series-split capacitor array for high-speed SAR ADCs. In: Proceedings of IEEE MWSCAS, pp. 922–925, August 2008
Kuttner, F.: A 1.2 V 10b 20 MSample/s non-binary successive approximation ADC in 0.13 μm CMOS. In: Proceedings of IEEE ISSCC, pp. 176–177 (2002)
Gan, J., Abraham, J.: Mixed-signal micro-controller for non-binary capacitor array calibration in data converter. In: Proceeding of IEEE Signals, Systems and Computers Conference, vol. 2, pp. 1046–1049, November 2002
Gan, J., Abraham, J.: A non-binary capacitor array calibration circuit with 22-bit accuracy in successive approximation analog-to-digital converters. In: Proceedings of IEEE MWSCAS, vol. 1, pp. 301–304, August 2002
Suarez, R.E., Gray, P.R., Hodges, D.A.: All-MOS charge-redistribution analog-to-digital conversion techniques—Part II. IEEE J. Solid-State Circuits SC-10(6), 379–385 (1975)
Craninckx, J., Plas, G.V.: A 65fJ/conversion-step 0-to-50 MS/s 0-to-0.7 mW 9b charge-sharing SAR ADC in 90 nm digital CMOS. In: Proceedings of IEEE ISSCC Digest of Technical Papers, pp. 246–600, February 2007
Le, H.P., Singh, J., Hiremath, L., Mallapur, V., Stojcevski, A.: Ultra-low-power variable-resolution successive approximation ADC for biomedical application. Electron. Lett. 41(11), 634–635 (2005)
Robert, P.Y., Gosselin, B., Ayoub, A.E., Sawan, M.: An ultra-low-power successive-approximation-based ADC for implantable sensing devices. In: Proceedings of IEEE MWSCAS, vol. 1, pp. 7–11, August 2006
Saul, P.H.: Successive approximation analog-to-digital conversion at video rates. IEEE J. Solid-State Circuits sc-16(3), 147–151 (1981)
Yang, Z., der Spiegel, J.V.: A 10-bit 8.3 MS/s switch-current successive approximation ADC for column-parallel imagers. In: Proceedings of IEEE ISCAS, pp. 224–227, May 2008
Dlugosz, R., Iniewski, K.: Ultra low power current-mode algorithmic analog-to-digital converter implemented in 0.18 μm CMOS technology for wireless sensor network. In: Proceedings of IEEE MIXDES, pp. 401–406, June 2006
Mortezapour, S., Lee, E.K.: A 1-V, 8-bit successive approximation ADC in standard CMOS process. IEEE J. Solid-State Circuits 35(4), 642–646 (2000)
Hammerschmied, C.M., Huang, Q.: Design and implementation of an untrimmed MOSFET-only 10-bit A/D converter with 79-dB THD. IEEE J. Solid-State Circuits 33(8), 1148–1157 (1998)
Lin, C.S., Liu, B.D.: A new successive approximation architecture for low-power low-cost CMOS A/D converter. IEEE J. Solid-State Circuits 38(1), 54–62 (2003)
Fayomi, C.J.B., Roberts, G.W., Sawan, M.: A 1-V, 10-bit rail-torail successive approximation analog-to-digital converter in standard 0.18 μm CMOS technology. In: Proceedings of IEEE ISCAS, pp. 460–463, May 2001
Shyu, J.B., Temes, G.C., Yao, K.: Random errors in MOS capacitors. IEEE J. Solid-State Circuits 17(6), 1070–1076 (1982)
Fayomi, C.J.-B., Roberts, G.W., Sawan, M.: Low-voltage CMOS analog switch for high precision sample-and-hold circuit. In: 43rd Midwest Symposium on Circuits and Systems, East Lansing, August 2000
Samavati, H., et al.: Fractal capacitors. IEEE J. Solid-State Circuits 33(12), 2035–2041 (1998)
Kazeminia, S., Hesamiafshar, Y., Hadidi, K., Khoei, A.: On matching properties of R-2R ladders in high performance digital-to-analog converters. In: 2010 18th Iranian Conference on Electrical Engineering (ICEE), pp. 432–436, May 2010
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Chirapangi, A.K., Madhuri, G.M.G., Burri, P.K., Movva, N.L.K. (2020). Design of Low Power SAR ADC with Two Different DAC Structure and Two Different SAR Logic Designs and Their Comparisons. In: Abraham, A., Cherukuri, A.K., Melin, P., Gandhi, N. (eds) Intelligent Systems Design and Applications. ISDA 2018 2018. Advances in Intelligent Systems and Computing, vol 940. Springer, Cham. https://doi.org/10.1007/978-3-030-16657-1_81
Download citation
DOI: https://doi.org/10.1007/978-3-030-16657-1_81
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-16656-4
Online ISBN: 978-3-030-16657-1
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)