Abstract
Identity-based broadcast encryption (IBBE) is an effective method to protect the data security and privacy in multi-receiver scenarios, which can make broadcast encryption more practical. This paper further expands the study of scalable revocation methodology in the setting of IBBE, where a key authority releases a key update material periodically in such a way that only non-revoked users can update their decryption keys. Following the binary tree data structure approach, a concrete instantiation of revocable IBBE scheme is proposed using asymmetric pairings of prime order bilinear groups. Moreover, this scheme can withstand decryption key exposure, which is proven to be semi-adaptively secure under chosen plaintext attacks in the standard model by reduction to static complexity assumptions. In particular, the proposed scheme is very efficient both in terms of computation costs and communication bandwidth, as the ciphertext size is constant, regardless of the number of recipients. To demonstrate the practicality, it is further implemented in Charm, a framework for rapid prototyping of cryptographic primitives.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agrawal S., Chase M.: FAME: fast attribute-based message encryption. In: Proceedings of the 24th ACM Conference on Computer and Communications Security (CCS 2017), pp. 665–682. ACM, New York (2017)
Akinyele, A., Garman, C., Miers, I., et al.: Charm: a framework for rapidly prototyping cryptosystems. J. Cryptogr. Eng. 3, 111–128 (2013)
Attrapadung, N., Imai, H.: Attribute-based encryption supporting direct/indirect revocation modes. In: Parker, M.G. (ed.) IMACC 2009. LNCS, vol. 5921, pp. 278–300. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10868-6_17
Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3_14
Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_13
Boldyreva, A., Goyal, V., Kumar, G.: Identity-based encryption with efficient revocation. In: Proceedings of the 15th ACM Conference on Computer and Communications Security (CCS 2008), pp. 417–426. ACM, New York (2008)
Chang, D., Chauhan, A.K., Kumar, S., Sanadhya, S.K.: Revocable identity-based encryption from codes with rank metric. In: Smart, N.P. (ed.) CT-RSA 2018. LNCS, vol. 10808, pp. 435–451. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76953-0_23
Chen, J., Lim, H.W., Ling, S., Wang, H., Nguyen, K.: Revocable identity-based encryption from lattices. In: Susilo, W., Mu, Y., Seberry, J. (eds.) ACISP 2012. LNCS, vol. 7372, pp. 390–403. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31448-3_29
Chatterjee, S., Menezes, A.: On cryptographic protocols employing asymmetric pairings-the role of \(\varphi \) revisited. Discret. Appl. Math. 159(13), 1311–1322 (2011)
Chen, J., Wee, H.: Semi-adaptive attribute-based encryption and improved delegation for boolean formula. In: Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp. 277–297. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10879-7_16
Delerablée, C.: Identity-based broadcast encryption with constant size ciphertexts and private keys. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 200–215. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76900-2_12
Emura, K., Seo, J.H., Youn, T.: Semi-generic transformation of revocable hierarchical identity-based encryption and its DBDH instantiation. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 99((A(1))), 83–91 (2016)
Fiat, A., Naor, M.: Broadcast encryption. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 480–491. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48329-2_40
Galbraith, S., Paterson, K., Smart, N.: Pairings for cryptographers. Discret. Appl. Math. 156(16), 3113–3121 (2008)
Gentry, C., Waters, B.: Adaptive security in broadcast encryption systems (with short ciphertexts). In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 171–188. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01001-9_10
Jutla, C.S., Roy, A.: Shorter quasi-adaptive NIZK proofs for linear subspaces. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8269, pp. 1–20. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42033-7_1
Katsumata, S., Matsuda, T., Takayasu, A.: Lattice-based revocable (hierarchical) identity-based encryption with decryption key exposure resistance. Cryptology ePrint Archive, Report 2018/420 (2018)
Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, polynomial equations, and inner products. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3_9
Kogan, N., Shavitt, Y., Wool, A.: A practical revocation scheme for broadcast encryption using smart cards. ACM Trans. Inf. Syst. Secur. 9(3), 325–351 (2006)
Lee, K.: Revocable hierarchical identity-based encryption with adaptive security. Cryptology ePrint Archive, Report 2016/749 (2016)
Lee, K., Lee, D., Park, J.: Efficient revocable identity-based encryption via subset difference methods. Des. Codes Cryptogr. 85, 39–76 (2017)
Lai, J., Mu, Y., Guo, F., et al.: Full privacy-preserving and revocable ID-based broadcast encryption for data access control in smart city. Pers. Ubiquitous Comput. 21, 855–868 (2017)
Ling, S., Nguyen, K., Wang, H., Zhang, J.: Server-aided revocable predicate encryption: formalization and lattice-based instantiation. CoRR, abs/1801.07844 (2018)
Lee, K., Park, S.: Revocable hierarchical identity-based encryption with shorter private keys and update keys. Des. Codes Cryptogrphy (2018). https://doi.org/10.1007/s10623-017-0453-2
Libert, B., Vergnaud, D.: Adaptive-ID secure revocable identity-based encryption. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 1–15. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00862-7_1
Miyaji, A., Nakabayashi, M., Takano, S.: Characterization of elliptic curve traces under FR-reduction. In: Won, D. (ed.) ICISC 2000. LNCS, vol. 2015, pp. 90–108. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45247-8_8
González-Nieto, J.M., Manulis, M., Sun, D.: Fully private revocable predicate encryption. In: Susilo, W., Mu, Y., Seberry, J. (eds.) ACISP 2012. LNCS, vol. 7372, pp. 350–363. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31448-3_26
Naor, D., Naor, M., Lotspiech, J.: Revocation and tracing schemes for stateless receivers. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 41–62. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_3
Nguyen, K., Wang, H., Zhang, J.: Server-aided revocable identity-based encryption from lattices. In: Foresti, S., Persiano, G. (eds.) CANS 2016. LNCS, vol. 10052, pp. 107–123. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48965-0_7
Qin, B., Deng, R.H., Li, Y., Liu, S.: Server-aided revocable identity-based encryption. In: Pernul, G., Ryan, P.Y.A., Weippl, E. (eds.) ESORICS 2015. LNCS, vol. 9326, pp. 286–304. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24174-6_15
Ramanna, S.C.: More efficient constructions for inner-product encryption. In: Manulis, M., Sadeghi, A.-R., Schneider, S. (eds.) ACNS 2016. LNCS, vol. 9696, pp. 231–248. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39555-5_13
Susilo, W., Chen, R., Guo, F., et al.: Recipient rovocable identity-based broadcast encryption, or how to revoke some recipient in IBBE without knowledge of the plaintext. In: Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security (AsiaCCS 2016), Xi’an, China, pp. 201–210. ACM (2016)
Seo, J.H., Emura, K.: Revocable identity-based encryption revisited: security model and construction. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 216–234. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36362-7_14
Seo, J.H., Emura, K.: Efficient delegation of key generation and revocation functionalities in identity-based encryption. In: Dawson, E. (ed.) CT-RSA 2013. LNCS, vol. 7779, pp. 343–358. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36095-4_22
Seo, J.H., Emura, K.: Revocable hierarchical identity-based encryption: history-free update, security against insiders, and short ciphertexts. In: Nyberg, K. (ed.) CT-RSA 2015. LNCS, vol. 9048, pp. 106–123. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16715-2_6
Seo, J.H., Emura, K.: Adaptive-ID secure revocable hierarchical identity-based encryption. In: Tanaka, K., Suga, Y. (eds.) IWSEC 2015. LNCS, vol. 9241, pp. 21–38. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22425-1_2
Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE under simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–636. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8_36
Watanabe, Y., Emura, K., Seo, J.H.: New revocable IBE in prime-order groups: adaptively secure, decryption key exposure resistant, and with short public parameters. In: Handschuh, H. (ed.) CT-RSA 2017. LNCS, vol. 10159, pp. 432–449. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-52153-4_25
Yang, B., Yang, K., Qin, Y., Zhang, Z., Feng, D.: DAA-TZ: an efficient DAA scheme for mobile devices using ARM TrustZone. In: Conti, M., Schunter, M., Askoxylakis, I. (eds.) Trust 2015. LNCS, vol. 9229, pp. 209–227. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22846-4_13
Acknowledgment
Part of this work was done while Aijun Ge was visiting Institute for Advanced Study, Tsinghua University. The authors would like to thank Jianghong Wei and Jie Zhang for their helpful discussions on the Charm framework. We also thank anonymous reviewers of PKC 2019 for their insightful comments. The work is partially supported by the National Natural Science Foundation of China (No. 61502529 and No. 61502276), the National Key Research and Development Program of China (No. 2017YFA0303903) and Zhejiang Province Key R&D Project (No. 2017C01062).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
A Proof of Lemma 3 in Sect. 3.2
A Proof of Lemma 3 in Sect. 3.2
Proof
Given a PPT adversary \(\mathcal {A}\) achieving a non-negligible difference \(\varepsilon \) in advantage between \({\text {Gam}}{{\text {e}}_q}\) and \({\text {Gam}}{{\text {e}}_{{\text {Final}}}}\), we will create a PPT algorithm \({\mathcal {C}}\) to break the ADDH1 assumption. Let \(({g_1},g_1^\mu ,g_1^{{\alpha _2}},g_1^{\beta \alpha },{g_2},g_2^\alpha ,g_2^{\beta \alpha },g_2^{\beta {\alpha _2}},g_2^{1/\beta },Z = g_1^{\mu {\alpha _2} + \eta })\) be the instance of ADDH1 problem in \(\mathcal {G}\) that \({\mathcal {C}}\) has to solve, i.e., to decide whether \(\eta = 0\) or a random value in \(\mathbb {Z}_p^*\). Note that in \({\text {Gam}}{{\text {e}}_q}\), all the user keys returned to \(\mathcal {A}\) are semi-functional and so is the challenge header and session key. \({\mathcal {C}}\) will simulate either \({\text {Gam}}{{\text {e}}_q}\) or \({\text {Gam}}{{\text {e}}_{{\text {Final}}}}\) with \({\mathcal {A}}\), depending on the value of \(\eta \).
Setup: At the beginning, \({\mathcal {C}}\) chooses random exponents \({\mathbf {u}_1} = ({u_{1,0}}, \cdots ,{u_{1,m}})\), \({\mathbf {u}_2} = ({u_{2,0}}, \cdots ,{u_{2,m}}),{w_1},{w_2}\xleftarrow {R}{\mathbb {Z}_p}\) and \(b \xleftarrow {R}\mathbb {Z}_p^*\), and sets the public parameters PP :
Note that this implicitly sets \({\alpha _1} := \alpha - b{\alpha _2}\), and the secret exponents \(({\alpha _1},{\alpha _2})\) in MSK are not available to \({\mathcal {C}}\).
Key Extraction: When the adversary \(\mathcal {A}\) requests a secret key extract query for an identity \(ID \in {\mathbb {Z}_p}\), \({\mathcal {C}}\) creates a semi-functional key. It does this by choosing random exponents \(r,\gamma ',kta{g_1}, \cdots ,kta{g_m}\xleftarrow {R}{\mathbb {Z}_p}\), which implicitly sets \(\gamma : = \gamma ' + b{\alpha _2}\). The semi-functional key elements are computed as:
\({K_1} = g_2^{{\alpha _1}} {(g_2^{{w_1}})^r} g_2^\gamma = g_2^\alpha {(g_2^{{w_1}})^r} g_2^{\gamma '},{K_2} = g_2^{{\alpha _2}}{(g_2^{{w_2}})^r}/g_2^{\gamma {b^{ - 1}}}= {(g_2^{{w_2}})^r}/g_2^{\gamma '{b^{ - 1}}},\) \({K_3} = g_2^r\).
For \(i=1,2,...,m\):
\( {K_{4,i}} = {({(g_2^{{w_1}})^{kta{g_i}}} \cdot g_2^{{u_{1,i}}}/{(g_2^{{u_{1,0}}})^{{{(ID)}^i}}})^r}\), \({K_{5,i}} = {({(g_2^{{w_2}})^{kta{g_i}}} \cdot g_2^{{u_{2,i}}}/{(g_2^{{u_{2,0}}})^{{{(ID)}^i}}})^r}.\)
This is a properly distributed semi-functional key, which can be easily verified.
Challenge: Once the public parameters PP and the keys for all key extraction queries are given, \({\mathcal {A}}\) provides a challenge privileged set \(S^ * = \{ I{D_1},I{D_2},...,I{D_n}\} \). \({\mathcal {C}}\) first computes the vector \(\mathbf {y} = ({y_0},{y_1}, \cdots ,{y_m})\) according to \(S^ *\) as the coefficient from \({P_{S^ *}}[Z] = \prod \nolimits _{I{D_j} \in {S^ *}} {(Z - I{D_j})}\). It then picks randomly \(s,ctag \in {\mathbb {Z}_p}\), and computes the challenge header \(Hdr=({C_1},{C_2},{C_3},ctag)\) as follows:
\({C_1} = g_1^s \cdot g_1^\mu ,{C_2} = g_1^{sb},{C_3} = {(W_1^{ctag} \cdot \prod \nolimits _{i = 0}^n {{{(g_1^{{u_i}})}^{{y_i}}}} )^s} \cdot g_1^{\mu (\langle \mathbf {y},{{\mathbf {u}}_1}\rangle + ctag \cdot {w_1})})\). In addition, the challenge session key K is set to be: \(K = {g_T}^s \cdot e(g_1^\mu ,g_2^\alpha )/e(Z,g_2^b)\).
One can verify that the challenge header \(Hdr=({C_1},{C_2},{C_3},ctag)\) has proper semi-functional forms. Furthermore, if \(Z = g_1^{\mu {\alpha _2} }\) (i.e., \(\eta =0\)), then K is a properly distributed semi-functional session key. In this case, \({\mathcal {C}}\) has properly simulated \(\text {Game}_{q}\). If \(\eta \) is a random value in \(\mathbb {Z}_p^*\), which means \(Z = g_1^{\mu {\alpha _2} + \eta }\) is a random element in \(G_1\), then K is uniformly distributed and is independent of all other components. In this case, \({\mathcal {C}}\) has properly simulated \(\text {Game}_{\text {Final}}\).
Guess: Eventually, the adversary \({\mathcal {A}}\) will output a guess \(\beta '\) of \(\beta \). The challenger \({\mathcal {C}}\) then outputs 0 to guess that \(Z = g_1^{\mu {\alpha _2} }\) if \(\beta ' = \beta \); otherwise, it outputs 1 to indicate that \(Z = g_1^{\mu {\alpha _2} + \eta }\) is a random element of \(G_1\). Also, \({\mathcal {C}}\) simulates \(\text {Game}_{q}\) if \(\eta =0\) and \(\text {Game}_{\text {Final}}\) if \(\eta \in {}_R\mathbb {Z}_p^{*}\). Therefore, \({\mathcal {C}}\) can use \({\mathcal {A}}\)’s output to distinguish \(Z = g_1^{\mu {\alpha _2} }\) from random with the same advantage that \({\mathcal {A}}\) has in distinguishing \(\text {Game}_{q}\) from \(\text {Game}_{\text {Final}}\).
This completes the proof of Lemma 3. \(\square \)
Rights and permissions
Copyright information
© 2019 International Association for Cryptologic Research
About this paper
Cite this paper
Ge, A., Wei, P. (2019). Identity-Based Broadcast Encryption with Efficient Revocation. In: Lin, D., Sako, K. (eds) Public-Key Cryptography – PKC 2019. PKC 2019. Lecture Notes in Computer Science(), vol 11442. Springer, Cham. https://doi.org/10.1007/978-3-030-17253-4_14
Download citation
DOI: https://doi.org/10.1007/978-3-030-17253-4_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-17252-7
Online ISBN: 978-3-030-17253-4
eBook Packages: Computer ScienceComputer Science (R0)