Abstract
A verifiable random function (VRF) is a pseudorandom function, where outputs can be publicly verified. That is, given an output value together with a proof, one can check that the function was indeed correctly evaluated on the corresponding input. At the same time, the output of the function is computationally indistinguishable from random for all non-queried inputs.
We present the first construction of a VRF which meets the following properties at once: It supports an exponential-sized input space, it achieves full adaptive security based on a non-interactive constant-size assumption and its proofs consist of only a logarithmic number of group elements for inputs of arbitrary polynomial length.
Our construction can be instantiated in symmetric bilinear groups with security based on the decision linear assumption. We build on the work of Hofheinz and Jager (TCC 2016), who were the first to construct a verifiable random function with security based on a non-interactive constant-size assumption. Basically, their VRF is a matrix product in the exponent, where each matrix is chosen according to one bit of the input. In order to allow verification given a symmetric bilinear map, a proof consists of all intermediary results. This entails a proof size of \(\varOmega (L)\) group elements, where L is the bit-length of the input.
Our key technique, which we call hunting and gathering, allows us to break this barrier by rearranging the function, which – combined with the partitioning techniques of Bitansky (TCC 2017) – results in a proof size of \(\ell \) group elements for arbitrary \(\ell \in \omega (1)\).
Supported by ERC Project PREP-CRYPTO (724307), by DFG grant HO 4534/2-2 and by a DAAD scholarship. This work was done in part while visiting the FACT Center at IDC Herzliya, Israel.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
For matrix \(\mathbf {M}\in \mathbb {Z}_p^3\) and subspaces \(\mathcal {U},\mathcal {V}\subseteq \mathbb {Z}_p^3\), by \(\mathbf {M}^\top \cdot \mathcal {U}=\mathcal {V}\) we denote the property that for all \(\mathbf {u}\in \mathcal {U}\) we have \(\mathbf {M}^\top \mathbf {u}\in \mathcal {V}\) and for each \(\mathbf {v}\in \mathcal {V}\) there exists a \(\mathbf {u}\) with \(\mathbf {M}^\top \mathbf {u}=\mathbf {v}\).
- 2.
More precisely, with probability at least \(1-(d-1)/p-1/p=1-d/p\).
References
Abdalla, M., Catalano, D., Fiore, D.: Verifiable random functions from identity-based key encapsulation. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 554–571. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01001-9_32
Abdalla, M., Catalano, D., Fiore, D.: Verifiable random functions: relations to identity-based key encapsulation and new constructions. J. Cryptol. 27(3), 544–593 (2014). https://doi.org/10.1007/s00145-013-9153-x
Abdalla, M., Fiore, D., Lyubashevsky, V.: From selective to full security: semi-generic transformations in the standard model. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 316–333. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30057-8_19
Au, M.H., Susilo, W., Mu, Y.: Practical compact E-Cash. In: Pieprzyk, J., Ghodosi, H., Dawson, E. (eds.) ACISP 2007. LNCS, vol. 4586, pp. 431–445. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73458-1_31
Badrinarayanan, S., Goyal, V., Jain, A., Sahai, A.: A note on VRFs from verifiable functional encryption. Cryptology ePrint Archive, Report 2017/051 (2017). http://eprint.iacr.org/2017/051
Belenkiy, M., Chase, M., Kohlweiss, M., Lysyanskaya, A.: Compact E-Cash and simulatable VRFs revisited. In: Shacham, H., Waters, B. (eds.) Pairing 2009. LNCS, vol. 5671, pp. 114–131. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03298-1_9
Bitansky, N.: Verifiable random functions from non-interactive witness-indistinguishable proofs. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part II. LNCS, vol. 10678, pp. 567–594. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70503-3_19
Boneh, D., Boyen, X.: Secure identity based encryption without random oracles. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 443–459. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8_27
Boneh, D., Montgomery, H.W., Raghunathan, A.: Algebraic pseudorandom functions with improved efficiency from the augmented cascade. In: Al-Shaer, E., Keromytis, A.D., Shmatikov, V. (eds.) ACM CCS 2010. ACM Press, October 2010, pp. 131–140 (2010). https://doi.org/10.1145/1866307.1866323
Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 523–552. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_27
Dodis, Y.: Efficient construction of (distributed) verifiable random functions. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 1–17. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36288-6_1
Dodis, Y., Yampolskiy, A.: A verifiable random function with short proofs and keys. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 416–431. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30580-4_28
Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework for Diffie-Hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1_8
Freire, E.S.V., Hofheinz, D., Paterson, K.G., Striecks, C.: Programmable hash functions in the multilinear setting. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 513–530. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_28
Goldreich, O.: Computational complexity: a conceptual perspective. ACM Sigact News 39(3), 35–39 (2008)
Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J. ACM 33(4), 792–807 (1986)
Goldreich, O., Oren, Y.: Definitions and properties of zero-knowledge proof systems. J. Cryptol. 7(1), 1–32 (1994)
Goyal, R., Hohenberger, S., Koppula, V., Waters, B.: A generic approach to constructing and proving verifiable random functions. Cryptology ePrint Archive, Report 2017/021 (2017). http://eprint.iacr.org/2017/021
Groth, J., Ostrovsky, R., Sahai, A.: New techniques for noninteractive zero-knowledge. J. ACM 59(3), 11:1–11:35 (2012). https://doi.org/10.1145/2220357.2220358. ISSN 0004–5411
Hofheinz, D., Jager, T.: Verifiable random functions from standard assumptions. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016, Part I. LNCS, vol. 9562, pp. 336–362. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49096-9_14
Hohenberger, S., Waters, B.: Constructing verifiable random functions with large input spaces. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 656–672. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_33
Hofheinz, D., Jager, T.: Verifiable random functions from standard assumptions. Cryptology ePrint Archive, Report 2015/1048 (2015). http://eprint.iacr.org/2015/1048
Jager, T.: Verifiable random functions from weaker assumptions. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015, pp. 121–143. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7_5
Jarecki, S., Shmatikov, V.: Handcuffing big brother: an abuse-resilient transaction escrow scheme. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 590–608. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3_35
Katsumata, S.: On the untapped potential of encoding predicates by arithmetic circuits and their applications. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Part III. LNCS, vol. 10626, pp. 95–125. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70700-6_4
Liskov, M.: Updatable zero-knowledge databases. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 174–198. Springer, Heidelberg (2005). https://doi.org/10.1007/11593447_10
Lysyanskaya, A.: Unique signatures and verifiable random functions from the DH-DDH separation. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 597–612. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9_38
Micali, S., Rabin, M.O., Vadhan, S.P.: Verifiable random functions. In: 40th FOCS. IEEE Computer Society Press, pp. 120–130, October 1999. https://doi.org/10.1109/SFFCS.1999.814584
Micali, S., Reyzin, L.: Soundness in the public-key model. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 542–565. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_32
Micali, S., Rivest, R.L.: Micropayments revisited. In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 149–163. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45760-7_11
Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random functions. J. ACM 51(2), 231–262 (2004)
Reed, I.S., Solomon, G.: Polynomial codes over certain finite fields. J. Soc. Ind. Appl. Math. 8(2), 300–304 (1960)
Roşie, R.: Adaptive-secure VRFs. Cryptology ePrint Archive, Report 2017/750 (2017). http://eprint.iacr.org/2017/750
Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639_7
Yamada, S.: Asymptotically compact adaptively secure lattice IBEs and verifiable random functions via generalized partitioning techniques. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part III. LNCS, vol. 10403, pp. 161–193. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63697-9_6
Acknowledgments
I would like to thank the anonymous reviewers of TCC 2018 and PKC 2019 for their helpful comments. Further, I would like to thank my advisor Dennis Hofheinz for his support and helpful feedback.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 International Association for Cryptologic Research
About this paper
Cite this paper
Kohl, L. (2019). Hunting and Gathering – Verifiable Random Functions from Standard Assumptions with Short Proofs. In: Lin, D., Sako, K. (eds) Public-Key Cryptography – PKC 2019. PKC 2019. Lecture Notes in Computer Science(), vol 11443. Springer, Cham. https://doi.org/10.1007/978-3-030-17259-6_14
Download citation
DOI: https://doi.org/10.1007/978-3-030-17259-6_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-17258-9
Online ISBN: 978-3-030-17259-6
eBook Packages: Computer ScienceComputer Science (R0)