Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Runtime Service Composition Modification Supporting Situational Sensor Data Correlation

  • Conference paper
  • First Online:
Service-Oriented Computing – ICSOC 2018 Workshops (ICSOC 2018)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 11434))

Included in the following conference series:

Abstract

Although IoT service and service composition provide effective means to develop IoT applications, the dynamic and time-varying correlation among massive sensors rises up new challenges to the traditional model-based approaches, and the extra uncertainty and complexity of service composition become apparent. This paper proposes a data-driven service composition method based on our previous proactive data service model. We utilize real-time correlation analysis of sensor data to refine model-based service composition at runtime. The correlation among sensor data is usually asynchronous. In this paper, we adopt and improve a Dynamic Time Warping (DTW) algorithm to obtain one-way lag-correlation, and realize dynamic sensor data correlation through refining existing service composition. Based on the real sensor data set in a coal-fired power plant, a series of experiments demonstrate the effectiveness of our service composition method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Han, Y.B., Liu, C., Su, S., et al.: A decentralized and service-based approach to proactively correlating stream data. In: International Conference on Internet of Things (2016)

    Google Scholar 

  2. Chu, V.W., Wong, R.K., Liu, W., et al.: Traffic analysis as a service via a unified model. In: IEEE International Conference on Services Computing, pp. 195–202. IEEE (2014)

    Google Scholar 

  3. Zhang, J., Radia, N., Li, Z., et al.: An infrastructure supporting considerate sensor service provisioning. In: The 6th IEEE International Conference on Service Oriented Computing and Applications (SOCA), pp. 69–76. IEEE (2013)

    Google Scholar 

  4. Guilly, T.L., Olsen, P., Ravn, A.P., et al.: HomePort: middleware for heterogeneous home automation networks. In: IEEE International Conference on Pervasive Computing and Communications Workshops, pp. 627–633. IEEE (2013)

    Google Scholar 

  5. Budgaga, W., Malensek, M., Pallickara, S.L., et al.: A framework for scalable real-time anomaly detection over voluminous, geospatial data streams. In: Concurrency & Computation Practice & Experience, pp. 1–24 (2017)

    Google Scholar 

  6. Hibner, A., Zielinski, K. Semantic-based dynamic service composition and adaptation. In: 2007 IEEE Congress on Services, pp. 213–220. IEEE (2007)

    Google Scholar 

  7. Klusch, M., Gerber, A.: Semantic web service composition planning with owls-xplan. In: Proceedings of the 1st International AAAI Fall Symposium on Agents and the Semantic Web, pp. 55–62 (2005)

    Google Scholar 

  8. Peer, J.: A POP-based replanning agent for automatic web service composition. In: Gómez-Pérez, A., Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532, pp. 47–61. Springer, Heidelberg (2005). https://doi.org/10.1007/11431053_4

    Chapter  Google Scholar 

  9. Liu, X., Ma, Y., Huang, G., et al.: Data-driven composition for service-oriented situational web applications. IEEE Trans. Serv. Comput. 8(1), 2–16 (2015)

    Article  Google Scholar 

  10. Hossain, M.S., Moniruzzaman, M., Muhammad, G., et al.: Big data-driven service composition using parallel clustered particle swarm optimization in mobile environment. IEEE Trans. Serv. Comput. 9(5), 806–817 (2016)

    Article  Google Scholar 

  11. Wu, S., Lin, H., Wang, W., et al.: RLC: ranking lag correlations with flexible sliding windows in data streams. Pattern Anal. Appl. 1–11 (2016)

    Google Scholar 

  12. Guo, T., Sathe, S., Aberer, K.: Fast distributed correlation discovery over streaming time-series data. In: Proceedings of the 24th ACM International Conference on Information and Knowledge Management (CIKM), pp. 1161–1170 (2015)

    Google Scholar 

  13. Liu, X., Yang, M.C.K.: Simultaneous curve registration and clustering for functional data. Comput. Stat. Data Anal. 53(4), 1361–1376 (2009)

    Article  MathSciNet  Google Scholar 

  14. Kate, R.J.: Using dynamic time warping distances as features for improved time series classification. Data Min. Knowl. Discov. 30(2), 283–312 (2016)

    Article  MathSciNet  Google Scholar 

  15. Sheng, Q.Z., Qiao, X., Vasilakos, A.V., et al.: Web services composition: a decade’s overview. Inf. Sci. 280, 218–238 (2014)

    Article  Google Scholar 

  16. Wu, Z., Ranabahu, A., Gomadam, K., Sheth, A., Miller, J.: Automatic composition of semantic web services using process mediation. In: International Conference on Enterprise Information Systems, pp. 453–461 (2007)

    Google Scholar 

  17. Canfora, G., Di Penta, M., Esposito, R., Villani, M.L.: A framework for QoS-aware binding and re-binding of composite web services. J. Syst. Softw. 81(10), 1754–1769 (2008)

    Article  Google Scholar 

  18. Kalasapur, S., Kumar, M., Shirazi, B.A.: Dynamic service composition in pervasive computing. IEEE Trans. Parallel Distrib. Syst. 18(7), 907–918 (2007)

    Article  Google Scholar 

  19. Zhang, L.J., Li, B.: Requirements driven dynamic services composition for web services and rid solutions. J. Grid Comput. 2, 121–140 (2004)

    Article  Google Scholar 

  20. Sakurai, Y., Papadimitriou, S., Faloutsos, C.: BRAID: stream mining through group lag correlations. In: ACM SIGMOD International Conference on Management of Data, pp. 599–610 (2005)

    Google Scholar 

  21. Lin, Z.Y., Jiang, Y., Lai, Y.X., et al.: A new algorithm on lagged correlation analysis between time series. J. Comput. Res. Dev. 12, 2645–2655 (2012)

    Google Scholar 

  22. Ramsay, J.: Functional Data Analysis. Springer, New York (2006). https://doi.org/10.1007/b98888

    Book  Google Scholar 

  23. Jiang, G.X., Wang, W.J.: Correlation analysis in curve registration of time series. J. Softw. 25(9), 2002–2017 (2014)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, C., Zhang, Z., Zhang, S., Han, Y. (2019). Runtime Service Composition Modification Supporting Situational Sensor Data Correlation. In: Liu, X., et al. Service-Oriented Computing – ICSOC 2018 Workshops. ICSOC 2018. Lecture Notes in Computer Science(), vol 11434. Springer, Cham. https://doi.org/10.1007/978-3-030-17642-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-17642-6_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-17641-9

  • Online ISBN: 978-3-030-17642-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics