Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Extending Compact-Diagram to Basic Smart Multi-Valued Variable Diagrams

  • Conference paper
  • First Online:
Integration of Constraint Programming, Artificial Intelligence, and Operations Research (CPAIOR 2019)

Abstract

Multi-Valued Decision Diagrams (MDDs), and more generally Multi-Valued Variable Diagrams (MVDs), are instrumental in modeling constrained combinatorial problems. This has led to a number of algorithms for filtering constraints such as mddc, MDD4R and CD (Compact-Diagram). Many compressed forms of tables have also been proposed over the years, leading to a ‘smart’ hybridization between extensional an intentional representations, which was obtained by embedding simple arithmetic constraints in tuples (of tables). Interestingly, the state-of-the-art algorithm CT (Compact-Table) has been recently extended to deal efficiently with bs-tables, i.e., ‘basic smart’ tables containing expressions of the form ‘\(*\)’, ‘\(\not = v\)’, ‘\(\le v\)’, ‘\(\ge v\)’ and ‘\(\in S\)’. In this paper, we introduce the concept of bs-MVDs by enabling arcs of diagrams to be labelled with similar expressions. We show how such diagrams can be naturally derived from ordinary tables and MDDs, and we extend the state-of-the-art algorithm CD in order to handle bs-MVDs (and bs-MDDs).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    In [27], a sparse-set domain implementation for obtaining \(\varDelta _x\) without overhead is described.

References

  1. Amilhastre, J., Fargier, H., Niveau, A., Pralet, C.: Compiling CSPs: a complexity map of (non-deterministic) multivalued decision diagrams. Int. J. Artif. Intell. Tools 23(04) (2014)

    Google Scholar 

  2. Andersen, H.R., Hadzic, T., Hooker, J.N., Tiedemann, P.: A constraint store based on multivalued decision diagrams. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 118–132. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74970-7_11

    Chapter  Google Scholar 

  3. Beldiceanu, N., Carlsson, M., Petit, T.: Deriving filtering algorithms from constraint checkers. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 107–122. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30201-8_11

    Chapter  MATH  Google Scholar 

  4. Bergman, D., Ciré, A., van Hoeve, W.: MDD propagation for sequence constraints. J. Artif. Intell. Res. 50, 697–722 (2014)

    Article  MathSciNet  Google Scholar 

  5. Bergman, D., Ciré, A., van Hoeve, W., Hooker, J.: Decision Diagrams for Optimization. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42849-9

    Book  MATH  Google Scholar 

  6. Bessiere, C., Hebrard, E., Hnich, B., Kiziltan, Z., Quimper, C.-G., Walsh, T.: Reformulating global constraints: the Slide and Regular constraints. In: Miguel, I., Ruml, W. (eds.) SARA 2007. LNCS (LNAI), vol. 4612, pp. 80–92. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73580-9_9

    Chapter  Google Scholar 

  7. Boussemart, F., Lecoutre, C., Piette, C.: XCSP3: an integrated format for benchmarking combinatorial constrained problems. Technical report. arXiv:1611.03398, CoRR (2016). http://www.xcsp.org

  8. Bryant, R.: Graph-based algorithms for Boolean function manipulation. IEEE Trans. Comput. 35(8), 677–691 (1986)

    Article  Google Scholar 

  9. Cappart, Q., Goutierre, E., Bergman, D., Rousseau, L.M.: Improving optimization bounds using machine learning: decision diagrams meet deep reinforcement learning. In: Proceedings of AAAI 2019 (2019)

    Google Scholar 

  10. Cheng, K., Yap, R.: An MDD-based generalized arc consistency algorithm for positive and negative table constraints and some global constraints. Constraints 15(2), 265–304 (2010)

    Article  MathSciNet  Google Scholar 

  11. Demeulenaere, J., et al.: Compact-table: efficiently filtering table constraints with reversible sparse bit-sets. In: Rueher, M. (ed.) CP 2016. LNCS, vol. 9892, pp. 207–223. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44953-1_14

    Chapter  Google Scholar 

  12. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Programm. 91(2), 201–213 (2002)

    Article  MathSciNet  Google Scholar 

  13. Gange, G., Stuckey, P., Szymanek, R.: MDD propagators with explanation. Constraints 16(4), 407–429 (2011)

    Article  MathSciNet  Google Scholar 

  14. Hadzic, T., Hooker, J.N., O’Sullivan, B., Tiedemann, P.: Approximate compilation of constraints into multivalued decision diagrams. In: Stuckey, P.J. (ed.) CP 2008. LNCS, vol. 5202, pp. 448–462. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85958-1_30

    Chapter  Google Scholar 

  15. Hoda, S., van Hoeve, W.-J., Hooker, J.N.: A systematic approach to MDD-based constraint programming. In: Cohen, D. (ed.) CP 2010. LNCS, vol. 6308, pp. 266–280. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15396-9_23

    Chapter  Google Scholar 

  16. Ingmar, L., Schulte, C.: Making compact-table compact. In: Hooker, J. (ed.) CP 2018. LNCS, vol. 11008, pp. 210–218. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98334-9_14

    Chapter  Google Scholar 

  17. Le Charlier, B., Khong, M.T., Lecoutre, C., Deville, Y.: Automatic synthesis of smart table constraints by abstraction of table constraints

    Google Scholar 

  18. Lecoutre, C.: STR2: optimized simple tabular reduction for table constraints. Constraints 16(4), 341–371 (2011)

    Article  MathSciNet  Google Scholar 

  19. Lecoutre, C., Likitvivatanavong, C., Yap, R.: STR3: a path-optimal filtering algorithm for table constraints. Artif. Intell. 220, 1–27 (2015)

    Article  MathSciNet  Google Scholar 

  20. Mairy, J.-B., Deville, Y., Lecoutre, C.: The smart table constraint. In: Michel, L. (ed.) CPAIOR 2015. LNCS, vol. 9075, pp. 271–287. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18008-3_19

    Chapter  MATH  Google Scholar 

  21. OscaR Team: OscaR: Scala in OR (2012). https://bitbucket.org/oscarlib/oscar

  22. Perez, G.: Decision diagrams: constraints and algorithms. Ph.D. thesis, Université de Nice (2017)

    Google Scholar 

  23. Perez, G., Régin, J.-C.: Improving GAC-4 for table and MDD constraints. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 606–621. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10428-7_44

    Chapter  Google Scholar 

  24. Perez, G., Régin, J.C.: Efficient operations ON MDDs for building constraint programming models. In: Twenty-Fourth International Joint Conference on Artificial Intelligence (2015)

    Google Scholar 

  25. Pesant, G.: A regular language membership constraint for finite sequences of variables. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 482–495. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30201-8_36

    Chapter  MATH  Google Scholar 

  26. Roy, P., Perez, G., Régin, J.-C., Papadopoulos, A., Pachet, F., Marchini, M.: Enforcing structure on temporal sequences: the allen constraint. In: Rueher, M. (ed.) CP 2016. LNCS, vol. 9892, pp. 786–801. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44953-1_49

    Chapter  Google Scholar 

  27. le Clément de Saint-Marcq, V., Schaus, P., Solnon, C., Lecoutre, C.: Sparse-sets for domain implementation. In: Proceeding of TRICS 2013, pp. 1–10 (2013)

    Google Scholar 

  28. de Uña, D., Gange, G., Schachte, P., Stuckey, P.J.: Compiling CP subproblems to mdds and d-DNNFs. Constraints 24(1), 56–93 (2019)

    Article  MathSciNet  Google Scholar 

  29. Verhaeghe, H., Lecoutre, C., Schaus, P.: Compact-MDD: efficiently filtering (s)MDD constraints with reversible sparse bit-sets. In: IJCAI, pp. 1383–1389 (2018)

    Google Scholar 

  30. Verhaeghe, H., Lecoutre, C., Deville, Y., Schaus, P.: Extending compact-table to basic smart tables. In: Beck, J.C. (ed.) CP 2017. LNCS, vol. 10416, pp. 297–307. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66158-2_19

    Chapter  Google Scholar 

  31. Verhaeghe, H., Lecoutre, C., Schaus, P.: Extending compact-table to negative and short tables. In: Proceedings of AAAI 2017 (2017)

    Google Scholar 

  32. Wang, R., Xia, W., Yap, R., Li, Z.: Optimizing Simple Tabular Reduction with a bitwise representation. In: Proceedings of IJCAI 2016, pp. 787–795 (2016)

    Google Scholar 

Download references

Acknowledgements

The second author is supported by the project CPER Data from the “Hauts-de-France”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hélène Verhaeghe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Verhaeghe, H., Lecoutre, C., Schaus, P. (2019). Extending Compact-Diagram to Basic Smart Multi-Valued Variable Diagrams. In: Rousseau, LM., Stergiou, K. (eds) Integration of Constraint Programming, Artificial Intelligence, and Operations Research. CPAIOR 2019. Lecture Notes in Computer Science(), vol 11494. Springer, Cham. https://doi.org/10.1007/978-3-030-19212-9_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-19212-9_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-19211-2

  • Online ISBN: 978-3-030-19212-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics