Abstract
Multi-Valued Decision Diagrams (MDDs), and more generally Multi-Valued Variable Diagrams (MVDs), are instrumental in modeling constrained combinatorial problems. This has led to a number of algorithms for filtering constraints such as mddc, MDD4R and CD (Compact-Diagram). Many compressed forms of tables have also been proposed over the years, leading to a ‘smart’ hybridization between extensional an intentional representations, which was obtained by embedding simple arithmetic constraints in tuples (of tables). Interestingly, the state-of-the-art algorithm CT (Compact-Table) has been recently extended to deal efficiently with bs-tables, i.e., ‘basic smart’ tables containing expressions of the form ‘\(*\)’, ‘\(\not = v\)’, ‘\(\le v\)’, ‘\(\ge v\)’ and ‘\(\in S\)’. In this paper, we introduce the concept of bs-MVDs by enabling arcs of diagrams to be labelled with similar expressions. We show how such diagrams can be naturally derived from ordinary tables and MDDs, and we extend the state-of-the-art algorithm CD in order to handle bs-MVDs (and bs-MDDs).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
In [27], a sparse-set domain implementation for obtaining \(\varDelta _x\) without overhead is described.
References
Amilhastre, J., Fargier, H., Niveau, A., Pralet, C.: Compiling CSPs: a complexity map of (non-deterministic) multivalued decision diagrams. Int. J. Artif. Intell. Tools 23(04) (2014)
Andersen, H.R., Hadzic, T., Hooker, J.N., Tiedemann, P.: A constraint store based on multivalued decision diagrams. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 118–132. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74970-7_11
Beldiceanu, N., Carlsson, M., Petit, T.: Deriving filtering algorithms from constraint checkers. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 107–122. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30201-8_11
Bergman, D., Ciré, A., van Hoeve, W.: MDD propagation for sequence constraints. J. Artif. Intell. Res. 50, 697–722 (2014)
Bergman, D., Ciré, A., van Hoeve, W., Hooker, J.: Decision Diagrams for Optimization. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42849-9
Bessiere, C., Hebrard, E., Hnich, B., Kiziltan, Z., Quimper, C.-G., Walsh, T.: Reformulating global constraints: the Slide and Regular constraints. In: Miguel, I., Ruml, W. (eds.) SARA 2007. LNCS (LNAI), vol. 4612, pp. 80–92. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73580-9_9
Boussemart, F., Lecoutre, C., Piette, C.: XCSP3: an integrated format for benchmarking combinatorial constrained problems. Technical report. arXiv:1611.03398, CoRR (2016). http://www.xcsp.org
Bryant, R.: Graph-based algorithms for Boolean function manipulation. IEEE Trans. Comput. 35(8), 677–691 (1986)
Cappart, Q., Goutierre, E., Bergman, D., Rousseau, L.M.: Improving optimization bounds using machine learning: decision diagrams meet deep reinforcement learning. In: Proceedings of AAAI 2019 (2019)
Cheng, K., Yap, R.: An MDD-based generalized arc consistency algorithm for positive and negative table constraints and some global constraints. Constraints 15(2), 265–304 (2010)
Demeulenaere, J., et al.: Compact-table: efficiently filtering table constraints with reversible sparse bit-sets. In: Rueher, M. (ed.) CP 2016. LNCS, vol. 9892, pp. 207–223. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44953-1_14
Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Programm. 91(2), 201–213 (2002)
Gange, G., Stuckey, P., Szymanek, R.: MDD propagators with explanation. Constraints 16(4), 407–429 (2011)
Hadzic, T., Hooker, J.N., O’Sullivan, B., Tiedemann, P.: Approximate compilation of constraints into multivalued decision diagrams. In: Stuckey, P.J. (ed.) CP 2008. LNCS, vol. 5202, pp. 448–462. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85958-1_30
Hoda, S., van Hoeve, W.-J., Hooker, J.N.: A systematic approach to MDD-based constraint programming. In: Cohen, D. (ed.) CP 2010. LNCS, vol. 6308, pp. 266–280. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15396-9_23
Ingmar, L., Schulte, C.: Making compact-table compact. In: Hooker, J. (ed.) CP 2018. LNCS, vol. 11008, pp. 210–218. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98334-9_14
Le Charlier, B., Khong, M.T., Lecoutre, C., Deville, Y.: Automatic synthesis of smart table constraints by abstraction of table constraints
Lecoutre, C.: STR2: optimized simple tabular reduction for table constraints. Constraints 16(4), 341–371 (2011)
Lecoutre, C., Likitvivatanavong, C., Yap, R.: STR3: a path-optimal filtering algorithm for table constraints. Artif. Intell. 220, 1–27 (2015)
Mairy, J.-B., Deville, Y., Lecoutre, C.: The smart table constraint. In: Michel, L. (ed.) CPAIOR 2015. LNCS, vol. 9075, pp. 271–287. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18008-3_19
OscaR Team: OscaR: Scala in OR (2012). https://bitbucket.org/oscarlib/oscar
Perez, G.: Decision diagrams: constraints and algorithms. Ph.D. thesis, Université de Nice (2017)
Perez, G., Régin, J.-C.: Improving GAC-4 for table and MDD constraints. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 606–621. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10428-7_44
Perez, G., Régin, J.C.: Efficient operations ON MDDs for building constraint programming models. In: Twenty-Fourth International Joint Conference on Artificial Intelligence (2015)
Pesant, G.: A regular language membership constraint for finite sequences of variables. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 482–495. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30201-8_36
Roy, P., Perez, G., Régin, J.-C., Papadopoulos, A., Pachet, F., Marchini, M.: Enforcing structure on temporal sequences: the allen constraint. In: Rueher, M. (ed.) CP 2016. LNCS, vol. 9892, pp. 786–801. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44953-1_49
le Clément de Saint-Marcq, V., Schaus, P., Solnon, C., Lecoutre, C.: Sparse-sets for domain implementation. In: Proceeding of TRICS 2013, pp. 1–10 (2013)
de Uña, D., Gange, G., Schachte, P., Stuckey, P.J.: Compiling CP subproblems to mdds and d-DNNFs. Constraints 24(1), 56–93 (2019)
Verhaeghe, H., Lecoutre, C., Schaus, P.: Compact-MDD: efficiently filtering (s)MDD constraints with reversible sparse bit-sets. In: IJCAI, pp. 1383–1389 (2018)
Verhaeghe, H., Lecoutre, C., Deville, Y., Schaus, P.: Extending compact-table to basic smart tables. In: Beck, J.C. (ed.) CP 2017. LNCS, vol. 10416, pp. 297–307. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66158-2_19
Verhaeghe, H., Lecoutre, C., Schaus, P.: Extending compact-table to negative and short tables. In: Proceedings of AAAI 2017 (2017)
Wang, R., Xia, W., Yap, R., Li, Z.: Optimizing Simple Tabular Reduction with a bitwise representation. In: Proceedings of IJCAI 2016, pp. 787–795 (2016)
Acknowledgements
The second author is supported by the project CPER Data from the “Hauts-de-France”.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Verhaeghe, H., Lecoutre, C., Schaus, P. (2019). Extending Compact-Diagram to Basic Smart Multi-Valued Variable Diagrams. In: Rousseau, LM., Stergiou, K. (eds) Integration of Constraint Programming, Artificial Intelligence, and Operations Research. CPAIOR 2019. Lecture Notes in Computer Science(), vol 11494. Springer, Cham. https://doi.org/10.1007/978-3-030-19212-9_39
Download citation
DOI: https://doi.org/10.1007/978-3-030-19212-9_39
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-19211-2
Online ISBN: 978-3-030-19212-9
eBook Packages: Computer ScienceComputer Science (R0)