Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Classification of Sounds Indicative of Respiratory Diseases

  • Conference paper
  • First Online:
Engineering Applications of Neural Networks (EANN 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1000))

Abstract

This work presents a system achieving classification of respiratory sounds directly related to various diseases of the human respiratory system, such as asthma, COPD, and pneumonia. We designed a feature set based on wavelet packet analysis characterizing data coming from four sound classes, i.e. crack, wheeze, normal, crack+wheeze. Subsequently, the captured temporal patterns are learned by hidden Markov models (HMMs). Finally, classification is achieved via a directed acyclic graph scheme limiting the problem space while based on decisions made by the available HMMs. Thorough experiments following a well-established protocol demonstrate the efficacy of the proposed solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://bhichallenge.med.auth.gr/.

  2. 2.

    Freely available at http://torch.ch/.

References

  1. Baluja, S., Covell, M.: Waveprint: efficient wavelet-based audio fingerprinting. Pattern Recogn. 41(11), 3467–3480 (2008). https://doi.org/10.1016/j.patcog.2008.05.006. http://www.sciencedirect.com/science/article/pii/S0031320308001702

    Article  Google Scholar 

  2. Chen, S.H., Wu, H.T., Chen, C.H., Ruan, J.C., Truong, T.: Robust voice activity detection algorithm based on the perceptual wavelet packet transform. In: 2005 International Symposium on Intelligent Signal Processing and Communication Systems. IEEE (2005). https://doi.org/10.1109/ispacs.2005.1595342

  3. Cook, S.A.: A taxonomy of problems with fast parallel algorithms. Inf. Control 64(1), 2–22 (1985). https://doi.org/10.1016/S0019-9958(85)80041-3. http://www.sciencedirect.com/science/article/pii/S0019995885800413. International Conference on Foundations of Computation Theory

    Article  MathSciNet  Google Scholar 

  4. Jakovljević, N., Lončar-Turukalo, T.: Hidden Markov model based respiratory sound classification. In: Maglaveras, N., Chouvarda, I., de Carvalho, P. (eds.) Precision Medicine Powered by pHealth and Connected Health. IP, vol. 66, pp. 39–43. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-7419-6_7

    Chapter  Google Scholar 

  5. Liu, P., Soong, F.K., Zhou, J.L.: Divergence-based similarity measure for spoken document retrieval. In: 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP 2007, vol. 4, pp. IV-89–IV-92, April 2007. https://doi.org/10.1109/ICASSP.2007.367170

  6. Ntalampiras, S.: A novel holistic modeling approach for generalized sound recognition. IEEE Sig. Process. Lett. 20(2), 185–188 (2013). https://doi.org/10.1109/LSP.2013.2237902

    Article  Google Scholar 

  7. Ntalampiras, S.: A classification scheme based on directed acyclic graphs for acoustic farm monitoring. In: 2018 23rd Conference of Open Innovations Association (FRUCT), pp. 276–282, November 2018. https://doi.org/10.23919/FRUCT.2018.8588077

  8. Ntalampiras, S.: Moving vehicle classification using wireless acoustic sensor networks. IEEE Trans. Merg. Top. Comput. Intell. 2(2), 129–138 (2018). https://doi.org/10.1109/TETCI.2017.2783340

    Article  Google Scholar 

  9. Ntalampiras, S.: Directed acyclic graphs for content based sound, musical genre, and speech emotion classification. J. New Music Res. 43(2), 173–182 (2014). https://doi.org/10.1080/09298215.2013.859709

    Article  Google Scholar 

  10. Ntalampiras, S.: A transfer learning framework for predicting the emotional content of generalized sound events. J. Acoust. Soc. Am. 141(3), 1694–1701 (2017). https://doi.org/10.1121/1.4977749

    Article  Google Scholar 

  11. Ntalampiras, S.: Bird species identification via transfer learning from music genres. Ecol. Inf. 44, 76–81 (2018). https://doi.org/10.1016/j.ecoinf.2018.01.006. https://www.sciencedirect.com/science/article/pii/S1574954117302467

    Article  Google Scholar 

  12. Ntalampiras, S., Fakotakis, N.: Speech/music discrimination based on discrete wavelet transform. In: Darzentas, J., Vouros, G.A., Vosinakis, S., Arnellos, A. (eds.) SETN 2008. LNCS (LNAI), vol. 5138, pp. 205–211. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87881-0_19

    Chapter  Google Scholar 

  13. Pramono, R.X.A., Bowyer, S., Rodriguez-Villegas, E.: Automatic adventitious respiratory sound analysis: a systematic review. PloS One 12(5), e0177926 (2017). https://doi.org/10.1371/journal.pone.0177926

    Article  Google Scholar 

  14. Rabiner, L.R.: A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE 77(2), 257–286 (1989). https://doi.org/10.1109/5.18626

    Article  Google Scholar 

  15. Ren, Y., Johnson, M.T., Tao, J.: Perceptually motivated wavelet packet transform for bioacoustic signal enhancement. J. Acoust. Soc. Am. 124(1), 316–327 (2008). https://doi.org/10.1121/1.2932070

    Article  Google Scholar 

  16. Reynolds, D.A., Rose, R.C.: Robust text-independent speaker identification using Gaussian mixture speaker models. IEEE Trans. Speech Audio Process. 3(1), 72–83 (1995). https://doi.org/10.1109/89.365379

    Article  Google Scholar 

  17. Rizal, A., Hidayat, R., Nugroho, H.A.: Signal domain in respiratory sound analysis: methods, application and future development. J. Comput. Sci. 11(10), 1005–1016 (2015). https://doi.org/10.3844/jcssp.2015.1005.1016

    Article  Google Scholar 

  18. Rocha, B.M., et al.: A respiratory sound database for the development of automated classiffication. In: Maglaveras, N., Chouvarda, I., de Carvalho, P. (eds.) Precision Medicine Powered by pHealth and Connected Health. IP, vol. 66, pp. 33–37. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-7419-6_6

    Chapter  Google Scholar 

  19. Serbes, G., Ulukaya, S., Kahya, Y.P.: An automated lung sound preprocessing and classification system based onspectral analysis methods. In: Maglaveras, N., Chouvarda, I., de Carvalho, P. (eds.) Precision Medicine Powered by pHealth and Connected Health. IP, vol. 66, pp. 45–49. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-7419-6_8

    Chapter  Google Scholar 

  20. Taylor, P.: The target cost formulation in unit selection speech synthesis. In: Ninth International Conference on Spoken Language Processing, ICSLP, INTERSPEECH 2006, Pittsburgh, PA, USA, 17–21 September 2006 (2006). http://www.isca-speech.org/archive/interspeech_2006/i06_1455.html

  21. Torrence, C., Compo, G.P.: A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 79, 61–78 (1998)

    Article  Google Scholar 

  22. VanderWeele, T.J., Robins, J.M.: Signed directed acyclic graphs for causal inference. J. Roy. Stat. Soc.: Ser. B (Stat. Method.) 72(1), 111–127 (2010). https://doi.org/10.1111/j.1467-9868.2009.00728.x

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhao, Y., Zhang, C., Soong, F.K., Chu, M., Xiao, X.: Measuring attribute dissimilarity with HMM KL-divergence for speech synthesis, 6 p. (2007)

    Google Scholar 

Download references

Acknowledgment

This research was funded by the ELKE TEI Crete funds related to the domestic project: Bioacoustic applications, number 80680.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilyas Potamitis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ntalampiras, S., Potamitis, I. (2019). Classification of Sounds Indicative of Respiratory Diseases. In: Macintyre, J., Iliadis, L., Maglogiannis, I., Jayne, C. (eds) Engineering Applications of Neural Networks. EANN 2019. Communications in Computer and Information Science, vol 1000. Springer, Cham. https://doi.org/10.1007/978-3-030-20257-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20257-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20256-9

  • Online ISBN: 978-3-030-20257-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics