Abstract
We propose a fast object detector, based on Convolutional Neural Network (CNN). The object detector, which operates on RGB images, is designed for a mobile robot equipped with a robotic manipulator. The proposed detector is designed to quickly and accurately detect objects which are common in small manufactories and workshops. We propose a fully convolutional architecture of neural network which allows the full GPU implementation. We provide results obtained on our custom dataset based on ImageNet and other common datasets, like COCO or PascalVOC. We also compare the proposed method with other state of the art object detectors.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Dai, J., Li, Y., He, K., Sun, J.: R-FCN: object detection via region-based fully convolutional networks. In: Lee, D.D., et al. (eds.) Conference on Neural Information Processing Systems (NIPS), Advances in Neural Information Processing Systems, vol. 29, pp. 379–387. Curran Associates (2016)
Correll, N., et al.: Analysis and observations from the first Amazon picking challenge. IEEE Trans. Autom. Sci. Eng. 15(1), 172–188 (2018)
Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 886–893 (2005)
Everingham, M., Gool, L.V., Williams, C.K.I., Winn, J., Zisserman, A.: The PASCAL visual object classes (VOC) challenge. Int. J. Comput. Vis. 88(2), 303–338 (2010)
Huang, J., et al.: Speed/accuracy trade-offs for modern convolutional object detectors. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3296–3297 (2017)
Krizhevsky, A., Sutskever, I., Hinton, G. E.: ImageNet classification with deep convolutional neural networks. In: Proceedings of the International Conference on Neural Information Processing Systems, pp. 1097–1105 (2012)
Liu, W., et al.: SSD: single shot MultiBox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2
MartiÃnez, E., del Pobil, A.P.: Object detection and recognition for assistive robots. IEEE Robot. Autom. Mag. 24(3), 123–138 (2017)
Pineau, J., Montemerlo, M., Pollack, M., Thrun, S.: Towards robotic assistants in nursing homes: challenges and results. Robot. Auton. Syst. 42(3), 271–281 (2002)
Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 779–788 (2016)
Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6517–6525 (2017)
Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2017)
Szegedy, C., Reed, S., Erhan, D., Anguelov, D.: Scalable, high-quality object detection (2015). http://arxiv.org/abs/1412.1441
Viola, P., Jones, M.J.: Robust real-time face detection. Int. J. Comput. Vis. 57(2), 137–154 (2004)
Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)
Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. Int. J. Comput. Vis. 88, 303–338 (2010)
Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48
Abadi, M.: et al.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems. http://download.tensorflow.org/paper/whitepaper2015.pdf
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Proceedings of the 3rd International Conference on Learning Representations (2015)
Clevert, D., Hochreiter, S., Unterthiner, T.: Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs). CoRR, abs/1511.07289 (2015)
Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pp. 249–256 (2010)
Acknowledgments
This work was supported by the NCBR Grant no. LIDER/33/0176/L-8/16/NCBR/2017.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Piaskowski, K., Belter, D. (2019). Fast Object Detector Based on Convolutional Neural Networks. In: Barneva, R., Brimkov, V., Kulczycki, P., Tavares, J. (eds) Computational Modeling of Objects Presented in Images. Fundamentals, Methods, and Applications. CompIMAGE 2018. Lecture Notes in Computer Science(), vol 10986. Springer, Cham. https://doi.org/10.1007/978-3-030-20805-9_15
Download citation
DOI: https://doi.org/10.1007/978-3-030-20805-9_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-20804-2
Online ISBN: 978-3-030-20805-9
eBook Packages: Computer ScienceComputer Science (R0)