Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Fast Object Detector Based on Convolutional Neural Networks

  • Conference paper
  • First Online:
Computational Modeling of Objects Presented in Images. Fundamentals, Methods, and Applications (CompIMAGE 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10986))

Abstract

We propose a fast object detector, based on Convolutional Neural Network (CNN). The object detector, which operates on RGB images, is designed for a mobile robot equipped with a robotic manipulator. The proposed detector is designed to quickly and accurately detect objects which are common in small manufactories and workshops. We propose a fully convolutional architecture of neural network which allows the full GPU implementation. We provide results obtained on our custom dataset based on ImageNet and other common datasets, like COCO or PascalVOC. We also compare the proposed method with other state of the art object detectors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dai, J., Li, Y., He, K., Sun, J.: R-FCN: object detection via region-based fully convolutional networks. In: Lee, D.D., et al. (eds.) Conference on Neural Information Processing Systems (NIPS), Advances in Neural Information Processing Systems, vol. 29, pp. 379–387. Curran Associates (2016)

    Google Scholar 

  2. Correll, N., et al.: Analysis and observations from the first Amazon picking challenge. IEEE Trans. Autom. Sci. Eng. 15(1), 172–188 (2018)

    Article  Google Scholar 

  3. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 886–893 (2005)

    Google Scholar 

  4. Everingham, M., Gool, L.V., Williams, C.K.I., Winn, J., Zisserman, A.: The PASCAL visual object classes (VOC) challenge. Int. J. Comput. Vis. 88(2), 303–338 (2010)

    Article  Google Scholar 

  5. Huang, J., et al.: Speed/accuracy trade-offs for modern convolutional object detectors. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3296–3297 (2017)

    Google Scholar 

  6. Krizhevsky, A., Sutskever, I., Hinton, G. E.: ImageNet classification with deep convolutional neural networks. In: Proceedings of the International Conference on Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  7. Liu, W., et al.: SSD: single shot MultiBox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  8. Martiínez, E., del Pobil, A.P.: Object detection and recognition for assistive robots. IEEE Robot. Autom. Mag. 24(3), 123–138 (2017)

    Article  Google Scholar 

  9. Pineau, J., Montemerlo, M., Pollack, M., Thrun, S.: Towards robotic assistants in nursing homes: challenges and results. Robot. Auton. Syst. 42(3), 271–281 (2002)

    MATH  Google Scholar 

  10. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 779–788 (2016)

    Google Scholar 

  11. Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6517–6525 (2017)

    Google Scholar 

  12. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2017)

    Article  Google Scholar 

  13. Szegedy, C., Reed, S., Erhan, D., Anguelov, D.: Scalable, high-quality object detection (2015). http://arxiv.org/abs/1412.1441

  14. Viola, P., Jones, M.J.: Robust real-time face detection. Int. J. Comput. Vis. 57(2), 137–154 (2004)

    Article  Google Scholar 

  15. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  16. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. Int. J. Comput. Vis. 88, 303–338 (2010)

    Article  Google Scholar 

  17. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  18. Abadi, M.: et al.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems. http://download.tensorflow.org/paper/whitepaper2015.pdf

  19. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Proceedings of the 3rd International Conference on Learning Representations (2015)

    Google Scholar 

  20. Clevert, D., Hochreiter, S., Unterthiner, T.: Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs). CoRR, abs/1511.07289 (2015)

    Google Scholar 

  21. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pp. 249–256 (2010)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the NCBR Grant no. LIDER/33/0176/L-8/16/NCBR/2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karol Piaskowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Piaskowski, K., Belter, D. (2019). Fast Object Detector Based on Convolutional Neural Networks. In: Barneva, R., Brimkov, V., Kulczycki, P., Tavares, J. (eds) Computational Modeling of Objects Presented in Images. Fundamentals, Methods, and Applications. CompIMAGE 2018. Lecture Notes in Computer Science(), vol 10986. Springer, Cham. https://doi.org/10.1007/978-3-030-20805-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20805-9_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20804-2

  • Online ISBN: 978-3-030-20805-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics