Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Symmetry-Aware Face Completion with Generative Adversarial Networks

  • Conference paper
  • First Online:
Computer Vision – ACCV 2018 (ACCV 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11364))

Included in the following conference series:

Abstract

Face completion is a challenging task in computer vision. Unlike general images, face images usually have strong semantic correlation and symmetry. Without taking these characteristics into account, existing face completion techniques usually fail to produce a photo-realistic result, especially for the missing key components (e.g., eyes and mouths). In this paper, we propose a symmetry-aware face completion method based on facial structural features using a deep generative model. The model is trained with a combination of a reconstruction loss, a structure loss, two adversarial losses and a symmetry loss, which ensures pixel faithfulness, local-global contents integrity and symmetrical consistency. We conduct a dedicated symmetry detection technique for facial components and show that the symmetrical attention module significantly improves face completion results. Experiments show that our method is capable of synthesizing semantically valid and visually plausible contents for the missing facial key parts from random mask. In addition, our model outperforms other methods for detail completion of facial components.

This work was supported by Tianjin Philosophy and Social Science Planning Program under grant TJSR15-008.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Change history

  • 05 October 2021

    In the original version of this book the address of the author Di Sun was incorrect. This has now been corrected.

References

  1. Afifi, M., Hussain, K.F.: MPB: a modified poisson blending technique. Comput. Vis. Media 1(4), 331–341 (2015)

    Article  Google Scholar 

  2. Barnes, C., Shechtman, E., Finkelstein, A., Goldman, D.B.: PatchMatch: a randomized correspondence algorithm for structural image editing. ACM Trans. Graph. (ToG) 28(3), 24 (2009)

    Article  Google Scholar 

  3. Bertalmio, M., Sapiro, G., Caselles, V., Ballester, C.: Image inpainting. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, pp. 417–424. ACM Press/Addison-Wesley Publishing Co. (2000)

    Google Scholar 

  4. Bitouk, D., Kumar, N., Dhillon, S., Belhumeur, P., Nayar, S.K.: Face swapping: automatically replacing faces in photographs. ACM Trans. Graph. (TOG) 27, 39 (2008)

    Article  Google Scholar 

  5. Deng, Y., Dai, Q., Zhang, Z.: Graph Laplace for occluded face completion and recognition. IEEE Trans. Image Process. 20(8), 2329–2338 (2011)

    Article  MathSciNet  Google Scholar 

  6. Deng, Y., Li, D., Xie, X., Lam, K.M., Dai, Q.: Partially occluded face completion and recognition. In: 2009 16th IEEE International Conference on Image Processing (ICIP), pp. 4145–4148. IEEE (2009)

    Google Scholar 

  7. Dolhansky, B., Ferrer, C.C.: Eye in-painting with exemplar generative adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7902–7911 (2018)

    Google Scholar 

  8. Elad, M., Starck, J.L., Querre, P., Donoho, D.L.: Simultaneous cartoon and texture image inpainting using morphological component analysis (MCA). Appl. Comput. Harmonic Anal. 19(3), 340–358 (2005)

    Article  MathSciNet  Google Scholar 

  9. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  10. Hays, J., Efros, A.A.: Scene completion using millions of photographs. ACM Trans. Graph. (TOG) 26, 4 (2007)

    Article  Google Scholar 

  11. Iizuka, S., Simo-Serra, E., Ishikawa, H.: Globally and locally consistent image completion. ACM Trans. Graph. (TOG) 36(4), 107 (2017)

    Article  Google Scholar 

  12. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. arXiv preprint (2017)

    Google Scholar 

  13. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  14. Köhler, R., Schuler, C., Schölkopf, B., Harmeling, S.: Mask-specific inpainting with deep neural networks. In: Jiang, X., Hornegger, J., Koch, R. (eds.) GCPR 2014. LNCS, vol. 8753, pp. 523–534. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11752-2_43

    Chapter  Google Scholar 

  15. Li, Y., Liu, S., Yang, J., Yang, M.H.: Generative face completion. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 1, p. 3 (2017)

    Google Scholar 

  16. Liu, G., Reda, F.A., Shih, K.J., Wang, T.C., Tao, A., Catanzaro, B.: Image inpainting for irregular holes using partial convolutions. arXiv preprint arXiv:1804.07723 (2018)

  17. Liu, P., Qi, X., He, P., Li, Y., Lyu, M.R., King, I.: Semantically consistent image completion with fine-grained details. arXiv preprint arXiv:1711.09345 (2017)

  18. Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784 (2014)

  19. Mo, Z., Lewis, J.P., Neumann, U.: Face inpainting with local linear representations. In: BMVC, vol. 1, p. 2 (2004)

    Google Scholar 

  20. Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., Efros, A.A.: Context encoders: feature learning by inpainting. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2536–2544 (2016)

    Google Scholar 

  21. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434 (2015)

  22. Ren, J.S., Xu, L., Yan, Q., Sun, W.: Shepard convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 901–909 (2015)

    Google Scholar 

  23. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  24. Saito, Y., Kenmochi, Y., Kotani, K.: Estimation of eyeglassless facial images using principal component analysis. In: Proceedings of the 1999 International Conference on Image Processing, ICIP 1999, vol. 4, pp. 197–201. IEEE (1999)

    Google Scholar 

  25. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2001, vol. 1, p. I. IEEE (2001)

    Google Scholar 

  26. Xie, J., Xu, L., Chen, E.: Image denoising and inpainting with deep neural networks. In: Advances in Neural Information Processing Systems, pp. 341–349 (2012)

    Google Scholar 

  27. Yang, C., Lu, X., Lin, Z., Shechtman, E., Wang, O., Li, H.: High-resolution image inpainting using multi-scale neural patch synthesis. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 1, p. 3 (2017)

    Google Scholar 

  28. Yeh, R.A., Chen, C., Lim, T.Y., Schwing, A.G., Hasegawa-Johnson, M., Do, M.N.: Semantic image inpainting with deep generative models. In: CVPR, vol. 2, p. 4 (2017)

    Google Scholar 

  29. Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. arXiv preprint arXiv:1511.07122 (2015)

  30. Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., Huang, T.S.: Generative image inpainting with contextual attention. arXiv preprint (2018)

    Google Scholar 

  31. Zhang, S., He, R., Sun, Z., Tan, T.: Multi-task convnet for blind face inpainting with application to face verification. In: 2016 International Conference on Biometrics (ICB), pp. 1–8. IEEE (2016)

    Google Scholar 

  32. Zhang, S., He, R., Sun, Z., Tan, T.: DeMeshNet: blind face inpainting for deep MeshFace verification. IEEE Trans. Inf. Forensics Secur. 13(3), 637–647 (2018)

    Article  Google Scholar 

  33. Zhang, W., Shan, S., Chen, X., Gao, W.: Local Gabor binary patterns based on Kullback–Leibler divergence for partially occluded face recognition. IEEE Signal Process. Lett. 14(11), 875–878 (2007)

    Article  Google Scholar 

  34. Zhuang, Y.T., Wang, Y.S., Shih, T.K., Tang, N.C.: Patch-guided facial image inpainting by shape propagation. J. Zhejiang Univ.-SCIENCE A 10(2), 232–238 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Di Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, J., Zhan, R., Sun, D., Pan, G. (2019). Symmetry-Aware Face Completion with Generative Adversarial Networks. In: Jawahar, C., Li, H., Mori, G., Schindler, K. (eds) Computer Vision – ACCV 2018. ACCV 2018. Lecture Notes in Computer Science(), vol 11364. Springer, Cham. https://doi.org/10.1007/978-3-030-20870-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20870-7_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20869-1

  • Online ISBN: 978-3-030-20870-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics