Abstract
A challenge that remains open in 3D deep learning is how to efficiently represent 3D data to feed deep neural networks. Recent works have been relying on volumetric or point cloud representations, but such approaches suffer from a number of issues such as computational complexity, unordered data, and lack of finer geometry. An efficient way to represent a 3D shape is through a polygon mesh as it encodes both shape’s geometric and topological information. However, the mesh’s data structure is an irregular graph (i.e. collection of vertices connected by edges to form polygonal faces) and it is not straightforward to integrate it into learning frameworks since every mesh is likely to have a different structure. Here we address this drawback by efficiently converting an unstructured 3D mesh into a regular and compact shape parametrization that is ready for machine learning applications. We developed a simple and lightweight learning framework able to reconstruct high-quality 3D meshes from a single image by using a compact representation that encodes a mesh using free-form deformation and sparse linear combination in a small dictionary of 3D models. In contrast to prior work, we do not rely on classical silhouette and landmark registration techniques to perform the 3D reconstruction. We extensively evaluated our method on synthetic and real-world datasets and found that it can efficiently and compactly reconstruct 3D objects while preserving its important geometrical aspects.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Wang, C., Wang, Y., Lin, Z., Yuille, A.L., Gao, W.: Robust estimation of 3D human poses from a single image. In: CVPR (2014)
Zhou, X., Leonardos, S., Hu, X., Daniilidis, K.: 3D shape estimation from 2D landmarks: a convex relaxation approach. In: CVPR (2015)
Kar, A., Tulsiani, S., Carreira, J., Malik, J.: Category-specific object reconstruction from a single image. In: CVPR (2015)
Rock, J., Gupta, T., Thorsen, J., Gwak, J., Shin, D., Hoiem, D.: Completing 3D object shape from one depth image. In: CVPR (2015)
Zhou, X., Zhu, M., Leonardos, S., Derpanis, K.G., Daniilidis, K.: Sparseness meets deepness: 3D human pose estimation from monocular video. In: CVPR (2016)
Wu, J., et al.: Single image 3D interpreter network. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 365–382. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_22
Kong, C., Zhu, R., Kiani, H., Lucey, S.: Structure from category: a generic and prior-less approach. In: 3DV (2016)
Bansal, A., Russell, B., Gupta, A.: Marr revisited: 2D–3D model alignment via surface normal prediction. In: CVPR (2016)
Han, K., Wong, K.Y.K., Tan, X.: Single view 3D reconstruction under an uncalibrated camera and an unknown mirror sphere. In: 3DV (2016)
Kong, C., Lin, C.H., Lucey, S.: Using locally corresponding CAD models for dense 3D reconstructions from a single image. In: CVPR (2017)
Choy, C.B., Xu, D., Gwak, J.Y., Chen, K., Savarese, S.: 3D-R2N2: a unified approach for single and multi-view 3D object reconstruction. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 628–644. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_38
Sharma, A., Grau, O., Fritz, M.: VConv-DAE: deep volumetric shape learning without object labels. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9915, pp. 236–250. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49409-8_20
Tatarchenko, M., Dosovitskiy, A., Brox, T.: Octree generating networks: efficient convolutional architectures for high-resolution 3D outputs. In: ICCV (2017)
Riegler, G., Ulusoy, A.O., Geiger, A.: OctNet: learning deep 3D representations at high resolutions. In: CVPR (2017)
Qi, C.R., Yi, L., Su, H., Guibas, L.J.: PointNet++: deep hierarchical feature learning on point sets in a metric space. In: NIPS (2017)
Pontes, J.K., Kong, C., Eriksson, A., Fookes, C., Lucey, S.: Compact model representation for 3D reconstruction. In: 3DV (2017)
Sederberg, T., Parry, S.: Free-form deformation of solid geometric models. In: SIGGRAPH (1986)
Chang, A.X., et al.: ShapeNet: an information-rich 3D model repository. Technical report arXiv:1512.03012 [cs.GR] (2015)
Wu, Z., Song, S., Khosla, A., Tang, X., Xiao, J.: 3D ShapeNets: a deep representation for volumetric shapes. In: CVPR (2015)
Ulusoy, A.O., Geiger, A., Black, M.J.: Towards probabilistic volumetric reconstruction using ray potential. In: 3DV (2015)
Cherabier, I., Häne, C., Oswald, M.R., Pollefeys, M.: Multi-label semantic 3D reconstruction using voxel blocks. In: 3DV (2016)
Rezende, D.J., Eslami, S.M.A., Mohamed, S., Battaglia, P., Jaderberg, M., Heess, N.: Unsupervised learning of 3D structure from images. In: NIPS (2016)
Yan, X., Yang, J., Yumer, E., Guo, Y., Lee, H.: Perspective transformer nets: learning single-view 3D object reconstruction without 3D supervision. In: NIPS (2016)
Qi, C.R., Su, H., Nießner, M., Dai, A., Yan, M., Guibas, L.J.: Volumetric and multi-view CNNs for object classification on 3D data. In: CVPR (2016)
Kar, A., Häne, C., Malik, J.: Learning a multi-view stereo machine. In: NIPS (2017)
Zhu, R., Galoogahi, H.K., Wang, C., Lucey, S.: Rethinking reprojection: closing the loop for pose-aware shape reconstruction from a single image. In: NIPS (2017)
Wu, J., Wang, Y., Xue, T., Sun, X., Freeman, W.T., Tenenbaum, J.B.: MarrNet: 3D shape reconstruction via 2.5D sketches. In: NIPS (2017)
Liao, Y., Donné, S., Geiger, A.: Deep marching cubes: learning explicit surface representations. In: CVPR (2018)
Girdhar, R., Fouhey, D.F., Rodriguez, M., Gupta, A.: Learning a predictable and generative vector representation for objects. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 484–499. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_29
Wu, J., Zhang, C., Xue, T., Freeman, W.T., Tenenbaum, J.B.: Learning a probabilistic latent space of object shapes via 3D generative-adversarial modeling. In: NIPS (2016)
Liu, J., Yu, F., Funkhouser, T.A.: Interactive 3D modeling with a generative adversarial network. In: 3DV (2017)
Gwak, J., Choy, C.B., Garg, A., Chandraker, M., Savarese, S.: Weakly supervised generative adversarial networks for 3D reconstruction. In: 3DV (2017)
Wang, P.S., Liu, Y., Guo, Y.X., Sun, C.Y., Tong, X.: O-CNN: octree-based convolutional neural networks for 3D shape analysis. In: SIGGRAPH (2017)
Häne, C., Tulsiani, S., Malik, J.: Hierarchical surface prediction for 3D object reconstruction. In: 3DV (2017)
Li, J., Chen, B.M., Lee, G.H.: SO-Net: self-organizing network for point cloud analysis. In: CVPR (2018)
Fan, H., Su, H., Guibas, L.J.: A point set generation network for 3D object reconstruction from a single image. In: CVPR (2017)
Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3D classification and segmentation. In: CVPR (2017)
Lin, C.H., Kong, C., Lucey, S.: Learning efficient point cloud generation for dense 3D object reconstruction. In: AAAI (2018)
Kurenkov, A., et al.: DeformNet: free-form deformation network for 3D shape reconstruction from a single image. In: WACV (2018)
Nan, L., Wonka, P.: PolyFit: polygonal surface reconstruction from point clouds. In: ICCV (2017)
Shin, D., Fowlkes, C.C., Hoiem, D.: Pixels, voxels, and views: a study of shape representations for single view 3d object shape prediction. In: CVPR (2018)
Sinha, A., Unmesh, A., Huang, Q., Ramani, K.: SurfNet: generating 3D shape surfaces using deep residual network. In: CVPR (2017)
Yumer, M.E., Mitra, N.J.: Learning semantic deformation flows with 3D convolutional networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 294–311. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_18
Xiang, Y., Mottaghi, R., Savarese, S.: Beyond PASCAL: a benchmark for 3D object detection in the wild. In: WACV (2014)
Paszke, A., et al.: Automatic differentiation in PyTorch. In: NIPS-W (2017)
Diederik, K., Jimmy, B.: Adam: a method for stochastic optimization. In: ICLR (2014)
Acknowledgements
This research was supported by the grants ARC DP170100632, ARC FT170100072 and NSF 1526033.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Pontes, J.K., Kong, C., Sridharan, S., Lucey, S., Eriksson, A., Fookes, C. (2019). Image2Mesh: A Learning Framework for Single Image 3D Reconstruction. In: Jawahar, C., Li, H., Mori, G., Schindler, K. (eds) Computer Vision – ACCV 2018. ACCV 2018. Lecture Notes in Computer Science(), vol 11361. Springer, Cham. https://doi.org/10.1007/978-3-030-20887-5_23
Download citation
DOI: https://doi.org/10.1007/978-3-030-20887-5_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-20886-8
Online ISBN: 978-3-030-20887-5
eBook Packages: Computer ScienceComputer Science (R0)