Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Image2Mesh: A Learning Framework for Single Image 3D Reconstruction

  • Conference paper
  • First Online:
Computer Vision – ACCV 2018 (ACCV 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11361))

Included in the following conference series:

Abstract

A challenge that remains open in 3D deep learning is how to efficiently represent 3D data to feed deep neural networks. Recent works have been relying on volumetric or point cloud representations, but such approaches suffer from a number of issues such as computational complexity, unordered data, and lack of finer geometry. An efficient way to represent a 3D shape is through a polygon mesh as it encodes both shape’s geometric and topological information. However, the mesh’s data structure is an irregular graph (i.e. collection of vertices connected by edges to form polygonal faces) and it is not straightforward to integrate it into learning frameworks since every mesh is likely to have a different structure. Here we address this drawback by efficiently converting an unstructured 3D mesh into a regular and compact shape parametrization that is ready for machine learning applications. We developed a simple and lightweight learning framework able to reconstruct high-quality 3D meshes from a single image by using a compact representation that encodes a mesh using free-form deformation and sparse linear combination in a small dictionary of 3D models. In contrast to prior work, we do not rely on classical silhouette and landmark registration techniques to perform the 3D reconstruction. We extensively evaluated our method on synthetic and real-world datasets and found that it can efficiently and compactly reconstruct 3D objects while preserving its important geometrical aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Refer to [10, 16] for more details about the graph creation and deformation process.

  2. 2.

    More results, failure cases, and videos can be found in the supplementary material.

References

  1. Wang, C., Wang, Y., Lin, Z., Yuille, A.L., Gao, W.: Robust estimation of 3D human poses from a single image. In: CVPR (2014)

    Google Scholar 

  2. Zhou, X., Leonardos, S., Hu, X., Daniilidis, K.: 3D shape estimation from 2D landmarks: a convex relaxation approach. In: CVPR (2015)

    Google Scholar 

  3. Kar, A., Tulsiani, S., Carreira, J., Malik, J.: Category-specific object reconstruction from a single image. In: CVPR (2015)

    Google Scholar 

  4. Rock, J., Gupta, T., Thorsen, J., Gwak, J., Shin, D., Hoiem, D.: Completing 3D object shape from one depth image. In: CVPR (2015)

    Google Scholar 

  5. Zhou, X., Zhu, M., Leonardos, S., Derpanis, K.G., Daniilidis, K.: Sparseness meets deepness: 3D human pose estimation from monocular video. In: CVPR (2016)

    Google Scholar 

  6. Wu, J., et al.: Single image 3D interpreter network. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 365–382. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_22

    Chapter  Google Scholar 

  7. Kong, C., Zhu, R., Kiani, H., Lucey, S.: Structure from category: a generic and prior-less approach. In: 3DV (2016)

    Google Scholar 

  8. Bansal, A., Russell, B., Gupta, A.: Marr revisited: 2D–3D model alignment via surface normal prediction. In: CVPR (2016)

    Google Scholar 

  9. Han, K., Wong, K.Y.K., Tan, X.: Single view 3D reconstruction under an uncalibrated camera and an unknown mirror sphere. In: 3DV (2016)

    Google Scholar 

  10. Kong, C., Lin, C.H., Lucey, S.: Using locally corresponding CAD models for dense 3D reconstructions from a single image. In: CVPR (2017)

    Google Scholar 

  11. Choy, C.B., Xu, D., Gwak, J.Y., Chen, K., Savarese, S.: 3D-R2N2: a unified approach for single and multi-view 3D object reconstruction. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 628–644. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_38

    Chapter  Google Scholar 

  12. Sharma, A., Grau, O., Fritz, M.: VConv-DAE: deep volumetric shape learning without object labels. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9915, pp. 236–250. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49409-8_20

    Chapter  Google Scholar 

  13. Tatarchenko, M., Dosovitskiy, A., Brox, T.: Octree generating networks: efficient convolutional architectures for high-resolution 3D outputs. In: ICCV (2017)

    Google Scholar 

  14. Riegler, G., Ulusoy, A.O., Geiger, A.: OctNet: learning deep 3D representations at high resolutions. In: CVPR (2017)

    Google Scholar 

  15. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: PointNet++: deep hierarchical feature learning on point sets in a metric space. In: NIPS (2017)

    Google Scholar 

  16. Pontes, J.K., Kong, C., Eriksson, A., Fookes, C., Lucey, S.: Compact model representation for 3D reconstruction. In: 3DV (2017)

    Google Scholar 

  17. Sederberg, T., Parry, S.: Free-form deformation of solid geometric models. In: SIGGRAPH (1986)

    Google Scholar 

  18. Chang, A.X., et al.: ShapeNet: an information-rich 3D model repository. Technical report arXiv:1512.03012 [cs.GR] (2015)

  19. Wu, Z., Song, S., Khosla, A., Tang, X., Xiao, J.: 3D ShapeNets: a deep representation for volumetric shapes. In: CVPR (2015)

    Google Scholar 

  20. Ulusoy, A.O., Geiger, A., Black, M.J.: Towards probabilistic volumetric reconstruction using ray potential. In: 3DV (2015)

    Google Scholar 

  21. Cherabier, I., Häne, C., Oswald, M.R., Pollefeys, M.: Multi-label semantic 3D reconstruction using voxel blocks. In: 3DV (2016)

    Google Scholar 

  22. Rezende, D.J., Eslami, S.M.A., Mohamed, S., Battaglia, P., Jaderberg, M., Heess, N.: Unsupervised learning of 3D structure from images. In: NIPS (2016)

    Google Scholar 

  23. Yan, X., Yang, J., Yumer, E., Guo, Y., Lee, H.: Perspective transformer nets: learning single-view 3D object reconstruction without 3D supervision. In: NIPS (2016)

    Google Scholar 

  24. Qi, C.R., Su, H., Nießner, M., Dai, A., Yan, M., Guibas, L.J.: Volumetric and multi-view CNNs for object classification on 3D data. In: CVPR (2016)

    Google Scholar 

  25. Kar, A., Häne, C., Malik, J.: Learning a multi-view stereo machine. In: NIPS (2017)

    Google Scholar 

  26. Zhu, R., Galoogahi, H.K., Wang, C., Lucey, S.: Rethinking reprojection: closing the loop for pose-aware shape reconstruction from a single image. In: NIPS (2017)

    Google Scholar 

  27. Wu, J., Wang, Y., Xue, T., Sun, X., Freeman, W.T., Tenenbaum, J.B.: MarrNet: 3D shape reconstruction via 2.5D sketches. In: NIPS (2017)

    Google Scholar 

  28. Liao, Y., Donné, S., Geiger, A.: Deep marching cubes: learning explicit surface representations. In: CVPR (2018)

    Google Scholar 

  29. Girdhar, R., Fouhey, D.F., Rodriguez, M., Gupta, A.: Learning a predictable and generative vector representation for objects. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 484–499. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_29

    Chapter  Google Scholar 

  30. Wu, J., Zhang, C., Xue, T., Freeman, W.T., Tenenbaum, J.B.: Learning a probabilistic latent space of object shapes via 3D generative-adversarial modeling. In: NIPS (2016)

    Google Scholar 

  31. Liu, J., Yu, F., Funkhouser, T.A.: Interactive 3D modeling with a generative adversarial network. In: 3DV (2017)

    Google Scholar 

  32. Gwak, J., Choy, C.B., Garg, A., Chandraker, M., Savarese, S.: Weakly supervised generative adversarial networks for 3D reconstruction. In: 3DV (2017)

    Google Scholar 

  33. Wang, P.S., Liu, Y., Guo, Y.X., Sun, C.Y., Tong, X.: O-CNN: octree-based convolutional neural networks for 3D shape analysis. In: SIGGRAPH (2017)

    Google Scholar 

  34. Häne, C., Tulsiani, S., Malik, J.: Hierarchical surface prediction for 3D object reconstruction. In: 3DV (2017)

    Google Scholar 

  35. Li, J., Chen, B.M., Lee, G.H.: SO-Net: self-organizing network for point cloud analysis. In: CVPR (2018)

    Google Scholar 

  36. Fan, H., Su, H., Guibas, L.J.: A point set generation network for 3D object reconstruction from a single image. In: CVPR (2017)

    Google Scholar 

  37. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3D classification and segmentation. In: CVPR (2017)

    Google Scholar 

  38. Lin, C.H., Kong, C., Lucey, S.: Learning efficient point cloud generation for dense 3D object reconstruction. In: AAAI (2018)

    Google Scholar 

  39. Kurenkov, A., et al.: DeformNet: free-form deformation network for 3D shape reconstruction from a single image. In: WACV (2018)

    Google Scholar 

  40. Nan, L., Wonka, P.: PolyFit: polygonal surface reconstruction from point clouds. In: ICCV (2017)

    Google Scholar 

  41. Shin, D., Fowlkes, C.C., Hoiem, D.: Pixels, voxels, and views: a study of shape representations for single view 3d object shape prediction. In: CVPR (2018)

    Google Scholar 

  42. Sinha, A., Unmesh, A., Huang, Q., Ramani, K.: SurfNet: generating 3D shape surfaces using deep residual network. In: CVPR (2017)

    Google Scholar 

  43. Yumer, M.E., Mitra, N.J.: Learning semantic deformation flows with 3D convolutional networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 294–311. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_18

    Chapter  Google Scholar 

  44. Xiang, Y., Mottaghi, R., Savarese, S.: Beyond PASCAL: a benchmark for 3D object detection in the wild. In: WACV (2014)

    Google Scholar 

  45. Paszke, A., et al.: Automatic differentiation in PyTorch. In: NIPS-W (2017)

    Google Scholar 

  46. Diederik, K., Jimmy, B.: Adam: a method for stochastic optimization. In: ICLR (2014)

    Google Scholar 

Download references

Acknowledgements

This research was supported by the grants ARC DP170100632, ARC FT170100072 and NSF 1526033.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jhony K. Pontes .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 17923 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pontes, J.K., Kong, C., Sridharan, S., Lucey, S., Eriksson, A., Fookes, C. (2019). Image2Mesh: A Learning Framework for Single Image 3D Reconstruction. In: Jawahar, C., Li, H., Mori, G., Schindler, K. (eds) Computer Vision – ACCV 2018. ACCV 2018. Lecture Notes in Computer Science(), vol 11361. Springer, Cham. https://doi.org/10.1007/978-3-030-20887-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20887-5_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20886-8

  • Online ISBN: 978-3-030-20887-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics