Abstract
Facial expression recognition classifies a face image into one of several discrete emotional categories. We have a lot of exclusive or non-exclusive emotional classes to describe the varied and nuancing meaning conveyed by facial expression. However, it is almost impossible to enumerate all the emotional categories and collect adequate annotated samples for each category. To this end, we propose a zero-shot learning framework with multi-label label propagation (Z-ML\(^2\)P). Z-ML\(^2\)P is built on existing multi-class datasets annotated with several basic emotions and it can infer the existence of other new emotion labels via a learned semantic space. To evaluate the proposed method, we collect a multi-label FER dataset FaceME. Experimental results on FaceME and two other FER datasets demonstrate that Z-ML\(^2\)P framework improves the state-of-the-art zero-shot learning methods in recognizing both seen or unseen emotions.
This work is done by Zijia Lu during his internship in Institute of Computing Technology, Chinese Academy of Sciences. We gratefully acknowledge the supports from National Key R&D Program of China (grant 2017YFA0700800), National Natural Science Foundation of China (grant 61702481), and External Cooperation Program of CAS (grant GJHZ1843). We also thank Yong Li for his help in adapting the annotation tool to Windows OS.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Akata, Z., Perronnin, F., Harchaoui, Z., Schmid, C.: Label-embedding for image classification. IEEE T-PAMI 38(7), 1425–1438 (2016)
Akata, Z., Reed, S., Walter, D., Lee, H., Schiele, B.: Evaluation of output embeddings for fine-grained image classification. In: Proceedings of CVPR (2015)
Bucak, S.S., Mallapragada, P.K., Jin, R., Jain, A.K.: Efficient multi-label ranking for multi-class learning: application to object recognition. In: Proceedings of ICCV (2009)
Changpinyo, S., Chao, W.L., Gong, B., Sha, F.: Synthesized classifiers for zero-shot learning. In: Proceedings of CVPR (2016)
Cohn, J.F., De la Torre, F.: Automated face analysis for affective computing. In: The Oxford Handbook of Affective Computing (2014)
De la Torre, F., Cohn, J.F.: Facial expression analysis. In: Moeslund, T., Hilton, A., Krüger, V., Sigal, L. (eds.) Visual Analysis of Humans, pp. 377–409. Springer, London (2011). https://doi.org/10.1007/978-0-85729-997-0_19
Du, S., Tao, Y., Martinez, A.M.: Compound facial expressions of emotion. Proc. Nat. Acad. Sci. 111(15), E1454–E1462 (2014)
Ekman, P., Friesen, W.V.: Constants across cultures in the face and emotion. J. Pers. Soc. Psychol. 17(2), 124–9 (1971)
Ekman, P., Rosenberg, E.L.: What the Face Reveals: Basic and Applied Studies of Spontaneous Expression Using the Facial Action Coding System (FACS). Oxford University Press, Oxford (1997)
Eleftheriadis, S., Rudovic, O., Pantic, M.: Discriminative shared gaussian processes for multiview and view-invariant facial expression recognition. IEEE Trans. Image Process. 24(1), 189–204 (2015)
Fabian Benitez-Quiroz, C., Srinivasan, R., Martinez, A.M.: Emotionet: an accurate, real-time algorithm for the automatic annotation of a million facial expressions in the wild. In: Proceedings of CVPR (2016)
Faddeev, D.K., Faddeeva, V.N.: Computational methods of linear algebra. J. Sov. Math. 15(5), 531–650 (1981)
Frome, A., Corrado, G., Shlens, J.: Devise: a deep visual-semantic embedding model. In: Proceedings of NIPS (2013)
Fu, Y., Hospedales, T.M., Xiang, T., Gong, S.: Transductive multi-view zero-shot learning. IEEE T-PAMI 37(11), 2332–2345 (2015)
Gaure, A., Gupta, A., Verma, V.K., Rai, P.: A probabilistic framework for zero-shot multi-label learning. In: Proceedings of UAI (2017)
Gibaja, E., Ventura, S.: A tutorial on multilabel learning. ACM Comput. Surv. 47(3), 52:1–52:38 (2015)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of CVPR (2015)
Kacem, A., Daoudi, M., Amor, B.B., Alvarez-Paiva, J.C.: A novel space-time representation on the positive semidefinite cone for facial expression recognition. In: Proceedings of ICCV (2017)
Kodirov, E., Xiang, T., Gong, S.: Semantic autoencoder for zero-shot learning. In: Proceedings of CVPR (2017)
Kosti, R., Alvarez, J.M., Recasens, A., Lapedriza, A.: Emotion recognition in context. In: Proceedings of CVPR (2017)
Li, A., Lu, Z., Wang, L., Xiang, T., Li, X., Wen, J.R.: Zero-Shot Fine-Grained Classification by Deep Feature Learning with Semantics. CoRR abs/1707.00785, pp. 1–10 (2017)
Li, S., Deng, W., Du, J.: Reliable crowdsourcing and deep locality-preserving learning for expression recognition in the wild. In: Proceedings of CVPR (2017)
Liu, M., Shan, S., Wang, R., Chen, X.: Learning expressionlets via universal manifold model for dynamic facial expression recognition. IEEE Trans. Image Process. 25(12), 5920–5932 (2016)
Lucey, P., Cohn, J.F., Kanade, T., Saragih, J., Ambadar, Z., Matthews, I.: The extended Cohn-Kanade dataset (CK+): a complete dataset for action unit and emotion-specified expression. In: Proceedings of CVPR (2010)
McDonald, J.B., Xu, Y.J.: A generalization of the beta distribution with applications. J. Econometrics 66(1), 133–152 (1995)
Mehrabian, A.: Framework for a comprehensive description and measurement of emotional states. Genet. Soc. Gen. Psychol. Monogr. 121(3), 339–361 (1995)
Mikolov, T., Corrado, G., Chen, K., Dean, J.: Efficient estimation of word representations in vector space. In: Proceedings of ICLR (2013)
Mollahosseini, A., Hasani, B., Mahoor, M.H.: Affectnet: a database for facial expression, valence, and arousal computing in the wild. IEEE Trans. Affect. Comput. (2017)
Parkhi, O.M., Vedaldi, A., Zisserman, A.: Deep face recognition. In: Proceedings of BMVC (2015)
Patterson, G., Hays, J.: Sun attribute database: discovering, annotating, and recognizing scene attributes. In: Proceedings of CVPR (2012)
Peng, G., Wang, S.: Weakly supervised facial action unit recognition through adversarial training. In: Proceedings of CVPR (2018)
Pennington, J., Socher, R., Manning, C.D.: GloVe: global vectors for word representation. In: Proceedings of EMNLP (2014)
Sang, D.V., Dat, N.V., Thuan, D.P.: Facial expression recognition using deep convolutional neural networks. In: Proceedings of KSE (2017)
Soleymani, M., Asghari-Esfeden, S., Fu, Y., Pantic, M.: Analysis of eeg signals and facial expressions for continuous emotion detection. IEEE Trans. Affect. Comput. 7(1), 17–28 (2016)
Wang, P., Liu, L., Shen, C.: Multi-attention network for one shot learning. In: Proceedings of CVPR (2017)
Xian, Y., Akata, Z., Sharma, G., Nguyen, Q., Hein, M., Schiele, B.: Latent embeddings for zero-shot classification. In: Proceedings of CVPR (2016)
Yang, H., Ciftci, U., Yin, L.: Facial expression recognition by de-expression residue learning. In: Proceedings of CVPR (2018)
Zhang, F., Zhang, T., Mao, Q., Xu, C.: Joint pose and expression modeling for facial expression recognition. In: Proceedings of CVPR (2018)
Zhang, Y., Gong, B., Shah, M.: Fast zero-shot image tagging. In: Proceedings of CVPR (2016)
Zhang, Y., Dong, W., Hu, B.G., Ji, Q.: Classifier learning with prior probabilities for facial action unit recognition. In: Proceedings of CVPR (2018)
Zhao, G., Pietikainen, M.: Dynamic texture recognition using local binary patterns with an application to facial expressions. IEEE T-PAMI 29(6), 915–928 (2007)
Zhao, K., Chu, W., la Torre, F.D., Cohn, J.F., Zhang, H.: Joint patch and multi-label learning for facial action unit and holistic expression recognition. IEEE Trans. Image Process. 25(8), 3931–3946 (2016)
Zhao, K., Chu, W.S., Martinez, A.M.: Learning facial action units from web images with scalable weakly supervised clustering. In: Proceedings of CVPR (2018)
Zhu, X., Ghahramani, Z., Lafferty, J.: Semi-supervised learning using Gaussian fields and harmonic functions. In: Proceedings of ICML (2003)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Lu, Z., Zeng, J., Shan, S., Chen, X. (2019). Zero-Shot Facial Expression Recognition with Multi-label Label Propagation. In: Jawahar, C., Li, H., Mori, G., Schindler, K. (eds) Computer Vision – ACCV 2018. ACCV 2018. Lecture Notes in Computer Science(), vol 11363. Springer, Cham. https://doi.org/10.1007/978-3-030-20893-6_2
Download citation
DOI: https://doi.org/10.1007/978-3-030-20893-6_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-20892-9
Online ISBN: 978-3-030-20893-6
eBook Packages: Computer ScienceComputer Science (R0)