Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Beyond Cause-Effect Pairs

  • Chapter
  • First Online:
Cause Effect Pairs in Machine Learning

Part of the book series: The Springer Series on Challenges in Machine Learning ((SSCML))

  • 1012 Accesses

Abstract

The cause-effect pair challenges focused on the development of inference methods to determine the causal relation between two variables. It is natural to then ask how such methods could generalize beyond the two variable case to settings that either involve more variables—such as is the case in graph learning—or to settings where the relationship between the candidate variables does not fall into one of the classes defined by the challenges. This chapter explores the extension of the proposed methods to such cases. It comes to the conclusion that such extensions are not likely to naturally evolve from the approaches that won the pair challenge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tetrad code package. URL http://www.phil.cmu.edu/tetrad/about.html.

  2. Peter Bühlmann, Jonas Peters, Jan Ernest, et al. Cam: Causal additive models, high-dimensional order search and penalized regression. The Annals of Statistics, 42(6):2526–2556, 2014.

    Article  MathSciNet  Google Scholar 

  3. K. Chalupka, P. Perona, and F. Eberhardt. Visual causal feature learning. In Proceedings of UAI, 2015.

    Google Scholar 

  4. K. Chalupka, P. Perona, and F. Eberhardt. Multi-level cause-effect systems. In Proceedings of AISTATS, 2016a.

    Google Scholar 

  5. Krzysztof Chalupka, Frederick Eberhardt, and Pietro Perona. Estimating causal direction and confounding of two discrete variables. arXiv preprint arXiv:1611.01504, 2016b.

    Google Scholar 

  6. Krzysztof Chalupka, Frederick Eberhardt, and Pietro Perona. Causal feature learning: an overview. Behaviormetrika, 44(1):137–164, 2017.

    Article  Google Scholar 

  7. José AR Fonollosa. Conditional distribution variability measures for causality detection. arXiv preprint arXiv:1601.06680, 2016.

    Google Scholar 

  8. D. Geiger and J. Pearl. On the logic of causal models. In Proceedings of UAI, 1988.

    Google Scholar 

  9. Mingming Gong, Kun Zhang, Bernhard Schoelkopf, Dacheng Tao, and Philipp Geiger. Discovering temporal causal relations from subsampled data. In International Conference on Machine Learning, pages 1898–1906, 2015.

    Google Scholar 

  10. Olivier Goudet, Diviyan Kalainathan, Philippe Caillou, Isabelle Guyon, David Lopez-Paz, and Michele Sebag. Learning functional causal models with generative neural networks. In Explainable and Interpretable Models in Computer Vision and Machine Learning, pages 39–80. Springer, 2018.

    Google Scholar 

  11. Daniel Hernandez-Lobato, Pablo Morales Mombiela, David Lopez-Paz, and Alberto Suarez. Non-linear causal inference using gaussianity measures. Journal of Machine Learning Research, 2016.

    Google Scholar 

  12. P.O. Hoyer, D. Janzing, J.M. Mooij, J.R. Peters, and B. Schölkopf. Nonlinear causal discovery with additive noise models. In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors, Advances in Neural Information Processing Systems 21, pages 689–696. 2008a.

    Google Scholar 

  13. P.O. Hoyer, S. Shimizu, A.J. Kerminen, and M. Palviainen. Estimation of causal effects using linear non-Gaussian causal models with hidden variables. International Journal of Approximate Reasoning, 49:362–378, 2008b.

    Article  MathSciNet  Google Scholar 

  14. Antti Hyttinen, Sergey Plis, Matti Järvisalo, Frederick Eberhardt, and David Danks. A constraint optimization approach to causal discovery from subsampled time series data. International Journal of Approximate Reasoning, 90:208–225, 2017.

    Article  MathSciNet  Google Scholar 

  15. Dominik Janzing and Bernhard Schoelkopf. Detecting confounding in multivariate linear models via spectral analysis. arXiv preprint arXiv:1704.01430, 2017.

    Google Scholar 

  16. Dominik Janzing, Jonas Peters, Joris Mooij, and Bernhard Schölkopf. Identifying confounders using additive noise models. In Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, pages 249–257. AUAI Press, 2009.

    Google Scholar 

  17. G Lacerda, P Spirtes, J Ramsey, and P. O. Hoyer. Discovering cyclic causal models by independent components analysis. In Proceedings of UAI, pages 366–374, 2008.

    Google Scholar 

  18. David Lopez-Paz, Krikamol Muandet, Bernhard Schölkopf, and Ilya O. Tolstikhin. Towards a learning theory of cause-effect inference. In ICML, pages 1452–1461, 2015.

    Google Scholar 

  19. Marc Maier. Causal Discovery for Relational Domains: Representation, Reasoning, and Learning. PhD thesis, 2014.

    Google Scholar 

  20. Marc Maier, Katerina Marazopoulou, David Arbour, and David Jensen. A sound and complete algorithm for learning causal models from relational data. arXiv preprint arXiv:1309.6843, 2013.

    Google Scholar 

  21. C. Meek. Strong completeness and faithfulness in bayesian networks. In Proceedings of UAI, pages 411–418. Morgan Kaufmann Publishers Inc., 1995.

    Google Scholar 

  22. Bram Minnaert. Feature importance in causal inference for numerical and categorical variables.

    Google Scholar 

  23. Diogo Moitinho de Almeida. Pattern-based causal feature extraction.

    Google Scholar 

  24. Joris M Mooij, Jonas Peters, Dominik Janzing, Jakob Zscheischler, and Bernhard Schölkopf. Distinguishing cause from effect using observational data: methods and benchmarks. The Journal of Machine Learning Research, 17(1):1103–1204, 2016.

    Google Scholar 

  25. Jonas Peters, Joris M Mooij, Dominik Janzing, and Bernhard Schölkopf. Causal discovery with continuous additive noise models. The Journal of Machine Learning Research, 15(1):2009–2053, 2014.

    Google Scholar 

  26. Jonas Peters, Dominik Janzing, and Bernhard Schölkopf. Elements of causal inference: foundations and learning algorithms. MIT press, 2017.

    MATH  Google Scholar 

  27. Joseph D Ramsey, Stephen José Hanson, and Clark Glymour. Multi-subject search correctly identifies causal connections and most causal directions in the dcm models of the smith et al. simulation study. NeuroImage, 58(3):838–848, 2011.

    Article  Google Scholar 

  28. Subhradeep Roy and Benjamin Jantzen. Detecting causality using symmetry transformations. Chaos: An Interdisciplinary Journal of Nonlinear Science, 28(7):075305, 2018.

    Article  MathSciNet  Google Scholar 

  29. Spyridon Samothrakis, Diego Perez, and Simon Lucas. Training gradient boosting machines using curve-fitting and information-theoretic features for causal direction detection.

    Google Scholar 

  30. Oliver Schulte and Hassan Khosravi. Learning graphical models for relational data via lattice search. Machine Learning, 88(3):331–368, 2012.

    Article  MathSciNet  Google Scholar 

  31. Shohei Shimizu and Kenneth Bollen. Bayesian estimation of causal direction in acyclic structural equation models with individual-specific confounder variables and non-gaussian distributions. The Journal of Machine Learning Research, 15(1):2629–2652, 2014.

    MathSciNet  MATH  Google Scholar 

  32. Shohei Shimizu, Patrik O Hoyer, Aapo Hyvärinen, and Antti Kerminen. A linear non-gaussian acyclic model for causal discovery. Journal of Machine Learning Research, 7(Oct):2003–2030, 2006.

    Google Scholar 

  33. P. Spirtes, C. Glymour, and R. Scheines. Causation, Prediction and Search. MIT Press, 2 edition, 2000.

    Google Scholar 

  34. K. Zhang and A. Hyvärinen. On the identifiability of the post-nonlinear causal model. In Proceedings of UAI, pages 647–655. AUAI Press, 2009.

    Google Scholar 

  35. Kun Zhang and Lai-Wan Chan. Extensions of ICA for causality discovery in the Hong Kong stock market. In International Conference on Neural Information Processing, pages 400–409. Springer, 2006.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederick Eberhardt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Eberhardt, F. (2019). Beyond Cause-Effect Pairs. In: Guyon, I., Statnikov, A., Batu, B. (eds) Cause Effect Pairs in Machine Learning. The Springer Series on Challenges in Machine Learning. Springer, Cham. https://doi.org/10.1007/978-3-030-21810-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21810-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21809-6

  • Online ISBN: 978-3-030-21810-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics