Abstract
The richness and openness of Linked Open Data (LOD) make them invaluable resources of information, and create new opportunities for many areas of application. In this paper, we address the exploitation of LOD by utilizing SPARQL queries in order to extract social networks of entities. This enables the application of techniques from Social Network Analysis to study social interactions among entities, providing deep insights into their latent social structure.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bizer, C., Heath, T., Berners-Lee, T.: Linked data - the story so far. Int. J. Semantic Web Inf. Syst. 5(3), 1–22 (2009)
Erétéo, G., Buffa, M., Gandon, F., Corby, O.: Analysis of a real online social network using semantic web frameworks. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 180–195. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04930-9_12
Erétéo, G., Gandon, F., Corby, O., Buffa, M.: Semantic social network analysis. CoRR abs/0904.3701 (2009)
Ghawi, R., Schönfeld, M., Pfeffer, J.: Towards semantic-based social network analysis. In: 14th International IEEE Conference on Signal-Image Technologies and Internet-Based Systems (SITIS 2018). IEEE, November 2018
Groth, P.T., Gil, Y.: Linked data for network science. In: LISC. CEUR Workshop Proceedings, vol. 783. CEUR-WS.org (2011)
Harris, S., Seaborne, A.: SPARQL 1.1 Query Language. W3C Recommendation (2013)
Hennig, M., Brandes, U., Pfeffer, J., Mergel, I.: Studying Social Networks: A Guide to Empirical Research. Campus Verlag, Frankfurt (2012)
Kaminski, M., Kostylev, E.V., Cuenca Grau, B.: Semantics and expressive power of subqueries and aggregates in SPARQL 1.1. In: Proceedings of the 25th International Conference on World Wide Web, Geneva, Switzerland, pp. 227–238 (2016)
Kaminski, M., Kostylev, E.V., Grau, B.C.: Query nesting, assignment, and aggregation in SPARQL 1.1. ACM Trans. Database Syst. 42(3), 17:1–17:46 (2017)
Mika, P.: Flink: semantic web technology for the extraction and analysis of social networks. Web Semant. 3(2–3), 211–223 (2005)
San Martín, M., Gutierrez, C.: Representing, querying and transforming social networks with RDF/SPARQL. In: Aroyo, L., Traverso, P., Ciravegna, F., Cimiano, P., Heath, T., Hyvönen, E., Mizoguchi, R., Oren, E., Sabou, M., Simperl, E. (eds.) ESWC 2009. LNCS, vol. 5554, pp. 293–307. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02121-3_24
Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications, 1st edn. Cambridge University Press, New York (1994)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Ghawi, R., Pfeffer, J. (2019). Mining Social Networks from Linked Open Data. In: Endres, D., Alam, M., Şotropa, D. (eds) Graph-Based Representation and Reasoning. ICCS 2019. Lecture Notes in Computer Science(), vol 11530. Springer, Cham. https://doi.org/10.1007/978-3-030-23182-8_16
Download citation
DOI: https://doi.org/10.1007/978-3-030-23182-8_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-23181-1
Online ISBN: 978-3-030-23182-8
eBook Packages: Computer ScienceComputer Science (R0)