Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Eye Gaze Sequence Analysis to Model Memory in E-education

  • Conference paper
  • First Online:
Artificial Intelligence in Education (AIED 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11626))

Included in the following conference series:

Abstract

Intelligent Tutoring Systems are now mature technologies that successfully help students to acquire new knowledge and competencies through various educational methods and in a personalized way. However, evaluating precisely what they recall at the end of the learning process remains a complex task. In this paper, we study if there are correlations between memory and gaze data in the context of e-education. Our long-term goal is to model the memory of students thank to an eye-tracker in a continuous and transparent way. These models could then be used to adapt recommendations of pedagogical resources to the students’ learning rate. So as to address this research question, we designed an experiment where students were asked to learn a short lesson about Esperanto. Our results show that some gaze characteristics are correlated with recall in memory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aben, B., Stapert, S., Blokland, A.: About the distinction between working memory and short-term memory. Front. Psychol. 3, 301 (2012)

    Article  Google Scholar 

  2. Baddeley, A.: The episodic buffer: a new component of working memory? Trends Cogn. Sci. 4(11), 417–423 (2000). https://doi.org/10.1016/S1364-6613(00)01538-2

    Article  Google Scholar 

  3. Bondareva, D., Conati, C., Feyzi-Behnagh, R., Harley, J.M., Azevedo, R., Bouchet, F.: Inferring learning from gaze data during interaction with an environment to support self-regulated learning. In: Lane, H.C., Yacef, K., Mostow, J., Pavlik, P. (eds.) AIED 2013. LNCS (LNAI), vol. 7926, pp. 229–238. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39112-5_24

    Chapter  Google Scholar 

  4. Borkin, M.A., et al.: Beyond memorability: visualization recognition and recall. IEEE Trans. Vis. Comput. Graph. 22(1), 519–528 (2016)

    Article  Google Scholar 

  5. Bylinskii, Z., Borkin, M.A., Kim, N.W., Pfister, H., Oliva, A.: Eye fixation metrics for large scale evaluation and comparison of information visualizations. In: Burch, M., Chuang, L., Fisher, B., Schmidt, A., Weiskopf, D. (eds.) ETVIS 2015. MV, pp. 235–255. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-47024-5_14

    Chapter  Google Scholar 

  6. Clariana, R.B., Lee, D.: The effects of recognition and recall study tasks with feedback in a computer-based vocabulary lesson. Educ. Technol. Res. Dev. 49(3), 23–36 (2001)

    Article  Google Scholar 

  7. Hannula, D.E., Ranganath, C.: The eyes have it: hippocampal activity predicts expression of memory in eye movements. Neuron 63, 592–599 (2009)

    Article  Google Scholar 

  8. Holland, C., Komogortsev, O.V.: Biometric identification via eye movement scanpaths in reading. In: 2011 International Joint Conference on Biometrics (IJCB), pp. 1–8, October 2011. https://doi.org/10.1109/IJCB.2011.6117536

  9. Just, M.A., Carpenter, P.A.: Eye fixations and cognitive processes. Cogn. Psychol. 8, 441–480 (1976)

    Article  Google Scholar 

  10. Komogortsev, O., Gobert, D., Jayarathna, S., Koh, D., Gowda, S.: Standardization of automated analyses of oculomotor fixation and saccadic behaviors. IEEE Trans. Biomed. Eng. 57, 2635–2645 (2010). https://doi.org/10.1109/TBME.2010.2057429

    Article  Google Scholar 

  11. Komogortsev, O.V., Jayarathna, S., Koh, D.H., Gowda, S.M.: Qualitative and quantitative scoring and evaluation of the eye movement classification algorithms. In: Proceedings of the 2010 Symposium on Eye-Tracking Research & Applications, ETRA 2010, pp. 65–68. ACM, New York (2010). https://doi.org/10.1145/1743666.1743682

  12. Shiffrin, R.M., Atkinson, R.C.: Storage and retrieval processes in long-term memory. Psychol. Rev. 76, 179–193 (1969). https://doi.org/10.1037/h0027277

    Article  Google Scholar 

  13. Marchal, F., Castagnos, S., Boyer, A.: First attempt to predict user memoryfrom gaze data. Int. J. Artif. Intell. Tools 27(6), 1850029 (2018)

    Article  Google Scholar 

  14. Miyake, A., Friedman, N., Emerson, J.M., Witzki, A., Howerter, A., Wager, T.: The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: a latent variable analysis. Cogn. Psychol. 41, 49–100 (2000). https://doi.org/10.1006/cogp.1999.0734

    Article  Google Scholar 

  15. Salvucci, D.D., Goldberg, J.H.: Identifying fixations and saccades in eye-tracking protocols. In: Proceedings of the 2000 Symposium on Eye Tracking Research & Applications, ETRA 2000, pp. 71–78. ACM, New York (2000). https://doi.org/10.1145/355017.355028

  16. Sharafi, Z., Shaffer, T., Sharif, B., Guéhéneuc, Y.: Eye-tracking metrics in software engineering. In: 2015 Asia-Pacific Software Engineering Conference (APSEC), pp. 96–103, December 2015. https://doi.org/10.1109/APSEC.2015.53

  17. Squire, L.R., Dede, A.J.O.: Conscious and unconscious memory systems. Cold Spring Harbor Perspect. Biol. 7(3), a021667 (2015)

    Article  Google Scholar 

  18. Steichen, B., Wu, M.M.A., Toker, D., Conati, C., Carenini, G.: Te,Te,Hi,Hi: eye gaze sequence analysis for informing user-adaptive information visualizations. In: Dimitrova, V., Kuflik, T., Chin, D., Ricci, F., Dolog, P., Houben, G.-J. (eds.) UMAP 2014. LNCS, vol. 8538, pp. 183–194. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08786-3_16

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvain Castagnos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Beuget, M., Castagnos, S., Luxembourger, C., Boyer, A. (2019). Eye Gaze Sequence Analysis to Model Memory in E-education. In: Isotani, S., Millán, E., Ogan, A., Hastings, P., McLaren, B., Luckin, R. (eds) Artificial Intelligence in Education. AIED 2019. Lecture Notes in Computer Science(), vol 11626. Springer, Cham. https://doi.org/10.1007/978-3-030-23207-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-23207-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-23206-1

  • Online ISBN: 978-3-030-23207-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics