Abstract
The paper investigates the state complexity of two operations on regular languages, known as GF(2)-concatenation and GF(2)-inverse (Bakinova et al., “Formal languages over GF(2)”, LATA 2018), in the case of a one-symbol alphabet. The GF(2)-concatenation is a variant of the classical concatenation obtained by replacing Boolean logic in its definition with the GF(2) field; it is proved that GF(2)-concatenation of two unary languages recognized by an m-state and an n-state DFA is recognized by a DFA with 2mn states, and this number of states is necessary in the worst case, as long as m and n are relatively prime. This operation is known to have an inverse, and the state complexity of the GF(2)-inverse operation over a unary alphabet is proved to be exactly \(2^{n-1}+1\).
Supported by Russian Science Foundation, project 18-11-00100.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bakinova, E., Basharin, A., Batmanov, I., Lyubort, K., Okhotin, A., Sazhneva, E.: Formal languages over GF(2). In: Klein, S.T., Martín-Vide, C., Shapira, D. (eds.) LATA 2018. LNCS, vol. 10792, pp. 68–79. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77313-1_5
Brzozowski, J.A.: Quotient complexity of regular languages. J. Autom. Lang. Comb. 15(1/2), 71–89 (2010). https://doi.org/10.25596/jalc-2010-071
Chrobak, M.: Finite automata and unary languages. Theor. Comput. Sci. 47(3), 149–158 (1986). https://doi.org/10.1016/0304-3975(86)90142-8
Daley, M., Domaratzki, M., Salomaa, K.: Orthogonal concatenation: language equations and state complexity. J. UCS 16(5), 653–675 (2010). https://doi.org/10.3217/jucs-016-05-0653
Geffert, V., Mereghetti, C., Pighizzini, G.: Converting two-way nondeterministic unary automata into simpler automata. Theor. Comput. Sci. 295, 189–203 (2003). https://doi.org/10.1016/S0304-3975(02)00403-6
Jirásková, G., Okhotin, A.: State complexity of unambiguous operations on deterministic finite automata. In: Konstantinidis, S., Pighizzini, G. (eds.) DCFS 2018. LNCS, vol. 10952, pp. 188–199. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94631-3_16
Kunc, M., Okhotin, A.: Describing periodicity in two-way deterministic finite automata using transformation semigroups. In: Mauri, G., Leporati, A. (eds.) DLT 2011. LNCS, vol. 6795, pp. 324–336. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22321-1_28
Makarov, V., Okhotin, A.: On the expressive power of GF(2)-grammars. In: Catania, B., Královič, R., Nawrocki, J., Pighizzini, G. (eds.) SOFSEM 2019. LNCS, vol. 11376, pp. 310–323. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-10801-4_25
Maslov, A.N.: Estimates of the number of states of finite automata. Soviet Math. Doklady 11, 1373–1375 (1970)
Mereghetti, C., Pighizzini, G.: Optimal simulations between unary automata. SIAM J. Comput. 30(6), 1976–1992 (2001). https://doi.org/10.1137/S009753979935431X
Okhotin, A.: Unambiguous finite automata over a unary alphabet. Inf. Comput. 212, 15–36 (2012). https://doi.org/10.1016/j.ic.2012.01.003
Pighizzini, G., Shallit, J.: Unary language operations, state complexity and Jacobsthal’s function. Int. J. Found. Comput. Sci. 13(1), 145–159 (2002). https://doi.org/10.1142/S012905410200100X
Yu, S., Zhuang, Q., Salomaa, K.: The state complexities of some basic operations on regular languages. Theor. Comput. Sci. 125(2), 315–328 (1994). https://doi.org/10.1016/0304-3975(92)00011-F
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 IFIP International Federation for Information Processing
About this paper
Cite this paper
Okhotin, A., Sazhneva, E. (2019). State Complexity of GF(2)-Concatenation and GF(2)-Inverse on Unary Languages. In: Hospodár, M., Jirásková, G., Konstantinidis, S. (eds) Descriptional Complexity of Formal Systems. DCFS 2019. Lecture Notes in Computer Science(), vol 11612. Springer, Cham. https://doi.org/10.1007/978-3-030-23247-4_19
Download citation
DOI: https://doi.org/10.1007/978-3-030-23247-4_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-23246-7
Online ISBN: 978-3-030-23247-4
eBook Packages: Computer ScienceComputer Science (R0)