Abstract
Myocardial segmentation plays a pivotal role in the clinical diagnosis of cardiac diseases. The difference in size and shape of the heart poses an extensive challenge to the clinical diagnosis. Being specific, the large amount of noise generated by the cardiac magnetic resonance (CMR) images also gives rise to substantial interference in the clinical diagnosis. Inspired by associated tasks, we put forward a network for the myocardium segmentation. In the proposed methodology, at first, we establish numerous sub-sampling layers in a bid to attain the high-level features, together with fusing the feature information of different visual fields by assuming different convolution kernel sizes. Thereafter, high-level features coupled with initial input features are merged by means of a plurality of cascaded convolution layers. It is capable of directly improving the performance of myocardium segmentation. We perform an assessment of our approach on 165 CMR T1 mapping images with lower PSNR, and the results demonstrate that our architecture outperforms previous approaches.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Wang, J., et al.: Detecting cardiovascular disease from mammograms with deep learning. IEEE Trans. Med. Imaging PP(99), 1172–1181 (2017)
Hauptmann, A., Arridge, S., Lucka, F., Muthurangu, V., Steeden, J.A.: Real-time cardiovascular MR with spatio-temporal de-aliasing using deep learning - proof of concept in congenital heart disease (2018)
Kelly, R.A., Balligand, J.L., Smith, T.W.: Nitric oxide and cardiac function. Life Sci. 81(10), 779–793 (1996)
Koch, W.J., et al.: Cardiac function in mice overexpressing the beta-adrenergic receptor kinase or a beta ark inhibitor. Science 268(5215), 1350–1353 (1995)
Frustaci, A., et al.: Improvement in cardiac function in the cardiac variant of Fabry’s disease with galactose-infusion therapy. N. Engl. J. Med. 345(1), 25–32 (2001)
Jadvar, H., Colletti, P.M.: Competitive advantage of PET/MRI. Eur. J. Radiol. 83(1), 84–94 (2014)
Kim, Y.S., et al.: The advantage of high-resolution mri in evaluating basilar plaques: a comparison study with MRA. Atherosclerosis 224(2), 411–416 (2012)
Lau, L.U., Thoeni, R.F.: Case report. Uterine lipoma: advantage of mri over ultrasound. Br. J. Radiol. 78(925), 72 (2005)
Andica, C., et al.: The advantage of synthetic MRI for the visualization of early white matter change in an infant with sturge-weber syndrome. Magn. Reson. Med. Sc. 15(4), 347–348 (2016)
Avendi, M.R., Kheradvar, A., Jafarkhani, H.: A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI. Med. Image Anal. 30, 108–119 (2016)
Golkov, V., et al.: q-space deep learning for twelve-fold shorter and model-free diffusion MRI scans. IEEE Trans. Med. Imaging 35(5), 1344–1351 (2016)
Beets-Tan, R.G.: MRI in rectal cancer: the T stage and circumferential resection margin. Colorectal Dis. 5(5), 392–395 (2010)
Giedd, J.N., et al.: Brain development during childhood and adolescence: a longitudinal MRI study. Nat. Neurosci. 10(10), 861–863 (1999)
Biswal, B., Yetkin, F.Z., Haughton, V.M., Hyde, J.S.: Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn. Reson. Med. 34(4), 537–541 (2010)
Luo, G., An, R., Wang, K., Dong, S., Zhang, H.: A deep learning network for right ventricle segmentation in short-axis MRI. In: Computing in Cardiology Conference (2017)
Kramer, C.M., Barkhausen, J., Flamm, S.D., Kim, R.J., Nagel, E.: Standardized cardiovascular magnetic resonance imaging (cmr) protocols, society for cardiovascular magnetic resonance: board of trustees task force on standardized protocols. J. Cardiovasc. Magn. Reson. 10(1), 35–35 (2008). Official Journal of the Society for Cardiovascular Magnetic Resonance
Pennell, D.J., et al.: Clinical indications for cardiovascular magnetic resonance (CMR): consensus panel report. J. Cardiovasc. Magn. Reson. 25(21), 727–765 (2004)
Moon, J.C., et al.: Myocardial T1 mapping and extracellular volume quantification: a society for cardiovascular magnetic resonance (SCMR) and CMR working group of the european society of cardiology consensus statement. J. Cardiovasc. Magn. Reson. 15(1), 92–92 (2013)
Singh, P., et al.: Cine-CMR partial voxel segmentation demonstrates increased aortic stiffness among patients with marfan syndrome. J. Thorac. Dis. 9(Suppl 4), S239 (2017)
Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 898–916 (2011)
Yang, L., Zhang, Y., Chen, J., Zhang, S., Chen, D.Z.: Suggestive annotation: a deep active learning framework for biomedical image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 399–407. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_46
Fang, S., et al.: Feature selection method based on class discriminative degree for intelligent medical diagnosis. CMC: Comput. Mater. Continua 55(3), 419–433 (2018)
Fang, W., Zhang, F., Sheng, V.S., Ding, Y.: A method for improving CNN-based image recognition using DCGAN. CMC: Comput. Mater. Continua 57(1), 167–178 (2018)
Charles, R.Q., Su, H., Mo, K., Guibas, L.J.: Pointnet: Deep learning on point sets for 3D classification and segmentation, pp. 77–85 (2016)
Wang, G., et al.: Interactive medical image segmentation using deep learning with image-specific fine-tuning. IEEE Trans. Med. Imaging PP(99) (2017)
Gaonkar, B., Hovda, D., Martin, N., Macyszyn, L.: Deep learning in the small sample size setting: cascaded feed forward neural networks for medical image segmentation. In: Medical Imaging 2016: Computer-Aided Diagnosis, p. 97852I (2016)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Dong, H., Yang, G., Liu, F., Mo, Y., Guo, Y.: Automatic brain tumor detection and segmentation using U-Net based fully convolutional networks. In: Valdés Hernández, M., González-Castro, V. (eds.) MIUA 2017. CCIS, vol. 723, pp. 506–517. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60964-5_44
Tong, Q., Ning, M., Si, W., Liao, X., Qin, J.: 3D deeply-supervised U-Net based whole heart segmentation. In: Pop, M., et al. (eds.) STACOM 2017. LNCS, vol. 10663, pp. 224–232. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75541-0_24
Ronneberger, O.: Invited talk: U-Net convolutional networks for biomedical image segmentation. Bildverarbeitung für die Medizin 2017. I, p. 3. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54345-0_3
Basu, A., Buch, V., Vogels, W., Eicken, T.V.: U-Net: a user-level network interface for parallel and distributed computing. ACM Sigops Oper. Syst. Rev. 29(5), 40–53 (1995)
Iglovikov, V., Shvets, A.: Ternausnet: U-net with vgg11 encoder pre-trained on imagenet for image segmentation (2018)
Brua, R.B., Culp, J.M., Benoy, G.A.: Comparison of benthic macroinvertebrate communities by two methods: Kick- and u-net sampling. Hydrobiologia 658(1), 293–302 (2011)
Acknowledgment
This work was supported by the National Natural Science Foundation of China (Grant No. 61602066) and the Scientific Research Foundation (KYTZ201608) of CUIT and the major Project of Education Department in Sichuan (17ZA0063 and 2017JQ0030), and partially supported by the Sichuan international science and technology cooperation and exchange research program (2016HH0018).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Luo, C., Li, X., Chen, Y., Wu, X., He, J., Zhou, J. (2019). CCNET: Cascading Convolutions for Cardiac Segmentation. In: Sun, X., Pan, Z., Bertino, E. (eds) Artificial Intelligence and Security. ICAIS 2019. Lecture Notes in Computer Science(), vol 11633. Springer, Cham. https://doi.org/10.1007/978-3-030-24265-7_1
Download citation
DOI: https://doi.org/10.1007/978-3-030-24265-7_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-24264-0
Online ISBN: 978-3-030-24265-7
eBook Packages: Computer ScienceComputer Science (R0)