Abstract
Quantum network coding (QNC) is a new technology of quantum network communication. Since QNC can maximize the communication efficiency of quantum communication networks, it receives wide attention. As an important quantum communication resource, quantum entanglement plays a key role in the field of quantum communication and quantum computation, of course, including QNC. Several typical QNC schemes require quantum entanglement to achieve lossless quantum communication. However, none of these previous schemes mentioned the formation and distribution of quantum entanglement. Moreover, the entangled resources required by these schemes are more demanding and the required experimental environment is harsh, which is difficult to operate in practice. Therefore, with the help of entanglement distribution by separable states and probabilistic cloning, we propose a novel quantum network coding scheme based on entanglement distribution. This scheme can successfully achieve quantum entanglement distribution in the butterfly network. It is efficient in the use of quantum resources and has stronger resistance to environmental noise and other disturbances. We also point out that quantum discord, as a more general quantum communication resource, controls the realization of the whole communication process.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Tan, X.Q., Li, X.C., Yang, P.: Perfect quantum teleportation via Bell states. Comput. Mater. Continua 57(3), 495–503 (2018)
Zhong, J.F., Liu, Z.H., Xu, J.: Analysis and improvement of an efficient controlled quantum secure direct communication and authentication protocol. Comput. Mater. Continua 57(3), 621–633 (2018)
Hayashi, M., Iwama, K., Nishimura, H., Raymond, R., Yamashita, S.: Quantum network coding. In: Thomas, W., Weil, P. (eds.) STACS 2007. LNCS, vol. 4393, pp. 610–621. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70918-3_52
Buzek, V., Hillery, M.: Quantum copying: beyond the no-cloning theorem. Phys. Rev. A 54, 1844 (1996)
Hayashi, M.: Prior entanglement between senders enables perfect quantum network coding with modification. Phys. Rev. A 76(4), 538–538 (2012)
Kobayashi, H., Le Gall, F., Nishimura, H., Rötteler, M.: General scheme for perfect quantum network coding with free classical communication. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5555, pp. 622–633. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02927-1_52
Bennett, C.H., Divincenzo, D.P.: Quantum information and computation. Nature 48(10), 24–30 (1995)
Cubitt, T.S., Verstraete, F., Dr, W., Cirac, J.I.: Separable states can be used to distribute entanglement. Phys. Rev. Lett. 91(3), 037902 (2003)
Bennett, C.H., Divincenzo, D.P., Smolin, J.A., Wootters, W.K.: Mixed-state entanglement and quantum error correction. Phys. Rev. A 54(5), 3824 (1996)
Vidal, G., Tarrach, R.: Robustness of entanglement. Phys. Rev. A 59(1), 141–155 (1999)
Braunstein, S.L., Caves, C.M., Jozsa, R., Linden, N., Popescu, S., Schack, R.: Separability of very noisy mixed states and implications for NMR quantum computing. Physics 83(5), 1054–1057 (1998)
Kay, A.: Using separable bell-diagonal states to distribute entanglement. Phys. Rev. Lett. 109(8), 080503 (2012)
Fedrizzi, A., Zuppardo, M., Gillett, G.G., Broome, M.A., Almeida, M.P., Paternostro, M., et al.: Experimental distribution of entanglement with separable carriers. Phys. Rev. Lett. 111(23), 230504 (2013)
Satoh, T., Le Gall, F., Imai, H.: Quantum network coding for quantum repeaters. Phys. Rev. A 86(3), 032331 (2012)
Wang, M.H., Cai, Q.Y.: High fidelity quantum cloning of two known nonorthogonal quantum states via weak measurement. arXiv:1806.08112v1 [quant-ph] (2018)
Mozyrsky, D., Privman, V., Hillery, M.: A Hamiltonian for quantum copying. Phys. Lett. A 226(5), 253–256 (1997)
Gisin, N., Massar, S.: Optimal quantum cloning machines. Phys. Rev. Lett. 79(11), 2153–2156 (1997)
Duan, L.M., Guo, G.C.: Probabilistic cloning and identification of linearly independent quantum states. Physics 80(22), 4999–5002 (1998)
Duan, L.M., Guo, G.C.: A probabilistic cloning machine for replicating two non-orthogonal states. Phys. Lett. A 243(5–6), 261–264 (1998)
Piani, M., Gharibian, S., Adesso, G., Calsamiglia, J., Horodecki, P., Winter, A.: All nonclassical correlations can be activated into distillable entanglement. Phys. Rev. Lett. 106(22), 220403 (2011)
Nielsen, M.A., Isaac, C.: Quantum Computation and Quantum Information. Cambridge (2002)
Bennett, C.H., Shor, P.W.: Quantum information theory. Rep. Math. Phys. 10(1), 43–72 (1998)
Abeyesinghe, A., Devetak, I., Hayden, P., Winter, A.: The mother of all protocols: restructuring quantum information’s family tree. Proc. Math. Phys. Eng. Sci. 465(2108), 2537–2563 (2009)
Madhok, V., Animesh, D.: Quantum discord as a resource in quantum communication. Int. J. Modern Phys. B 27(01n03), 1345041 (2013)
Killoran, N., Steinhoff, F.E., Plenio, M.B.: Converting nonclassicality into entanglement. Phys. Rev. Lett. 116(8), 080402 (2015)
Acknowledgment
This project was supported by the National Natural Science Foundation of China (No. 61571024) for valuable helps.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Shang, T., Liu, R., Fang, C., Liu, J. (2019). Quantum Network Coding Based on Entanglement Distribution. In: Sun, X., Pan, Z., Bertino, E. (eds) Artificial Intelligence and Security. ICAIS 2019. Lecture Notes in Computer Science(), vol 11635. Springer, Cham. https://doi.org/10.1007/978-3-030-24268-8_2
Download citation
DOI: https://doi.org/10.1007/978-3-030-24268-8_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-24267-1
Online ISBN: 978-3-030-24268-8
eBook Packages: Computer ScienceComputer Science (R0)