Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Distributed Ledger Technology and Cyber-Physical Systems. Multi-agent Systems. Concepts and Trends

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2019 (ICCSA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11620))

Included in the following conference series:

  • 2000 Accesses

Abstract

This paper describes how Distributed Ledger Technologies can be used to enforce smart contracts and to organize the behavior of multi-agents trying to access a different resource. The first part of the paper analyses the advantages and disadvantages of using Distributed Ledger Technologies architectures to implement certain Cyber-Physical and Control Systems. The second part propose perspective applications of Distributed Ledger Technologies in Cyber-Physical Systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kuhn, T.: The Structure of Scientific Revolutions. The University of Chicago Press, Chicago (2012)

    Book  Google Scholar 

  2. Peysakhovich, A.: Reinforcement Learning and Inverse Reinforcement Learning with System 1 and System 2 (2019)

    Google Scholar 

  3. Kahneman, D.: Thinking, Fast and Slow, Farrar, Straus and Giroux, New York (2013)

    Google Scholar 

  4. Lazaridou, A., Peysakhovich, A., Baroni, M.: Multi-agent cooperation. In: ICLR (2017)

    Google Scholar 

  5. Bottou, L. (2011). https://arxiv.org/ftp/arxiv/papers/1102/1102.1808.pdf

  6. De Domenico, M., et al.: Mathematical formulation of multilayer networks. Phys. Rev. X 3, 041022 (2013)

    Google Scholar 

  7. Boccaletti, S., et al.: The structure and dynamics of multilayer networks. Phys. Rep. 544, 1–122 (2014)

    Article  MathSciNet  Google Scholar 

  8. Fong, B., Spivak, D.I.: Hypergraph Categories. J. Pure Appl. Algebr. (2019)

    Google Scholar 

  9. Di Francesco Maesa, D., Marino, A., Ricci, L.: Detecting artificial behaviours in the bitcoin users graph. Online Soc. Netw. Media 3–4, 63–74 (2017)

    Article  Google Scholar 

  10. Kotilevets, I.D., et al.: Implementation of directed acyclic graph in blockhain network to improve security and speed of transactions. IFAC 51, 693–696 (2018)

    Google Scholar 

  11. Quiterio, T.M., Lorena, A.C.: Using complexity measures to determine the structure. Appl. Soft Comput. 65, 428–442 (2018)

    Article  Google Scholar 

  12. Bang-Jensen, Jørgen, Gutin, Gregory (eds.): Classes of Directed Graphs. SMM. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-71840-8

    Book  MATH  Google Scholar 

  13. Comuzzi, M.: Optimal directed hypergraph traversal with ant-colony optimisation. Inf. Sci. 471, 132–148 (2018)

    Article  MathSciNet  Google Scholar 

  14. Zhanga, Z., Chen, D., Wang, J., Bai, L., Hancock, E.R.: Quantum-based subgraph convolutional neural networks. Pattern Recognit. 88, 38–49 (2019)

    Article  Google Scholar 

  15. Narayan, A., O’N Roe, P.H.: Learning graph dynamics using deep neural networks. IFAC 51, 433–438 (2018)

    Google Scholar 

  16. Blockchain in energy and utilities use cases, vendor activity. Indigo Advisory Group (2019). https://www.indigoadvisorygroup.com/blockchain

  17. Why the energy sector must embrace blockchain now. Ernst & Young Global Limited (2019). https://www.ey.com/en_gl/digital/blockchain-s-potential-win-for-the-energy-sector. Accessed 09 Apr 2019

  18. Mengelkamp, E., Gärttner, J., Rock, K., Kessler, S., Orsini, L., Weinhardt, C.: Designing microgrid energy markets. A case study: The Brooklyn Microgrid. Appl. Energy 210, 870–880 (2018)

    Google Scholar 

  19. Hsieh, Y.-Y.: The Rise of Decentralized Autonomous Organizations: Coordination and Growth within Cryptocurrencies. https://ir.lib.uwo.ca/cgi/viewcontent.cgi?article=7386&context=etd. Accessed 10 Apr 2019

  20. Kypriotaki, K.N., Zamani, E.D., Giaglis, G.M.: From bitcoin to decentralized autonomous corporations. In: Proceedings of the 17th International Conference on Enterprise Information Systems (ICEIS-2015) (2015)

    Google Scholar 

  21. Afanasyev, I., Kolotov, A., Rezin, R., Danilov, K., Kashevnik, A.: Blockchain solutions for multi-agent robotic systems: related work and open questions (2019). https://arxiv.org/pdf/1903.11041.pdf. Accessed 10 Apr 2019

  22. Pawlak, M., Poniszewska-Maranda, A., Kryvinska, N.: Towards the intelligent agents for blockchain e-voting system. In: The 9th International Conference on Emerging Ubiquitous Systems and Pervasive Networks (EUSPN 2018), Leuven, Belgium (2018)

    Google Scholar 

  23. Ramos, S.: Demand response programs definition supported by clustering and classification techniques. In: 16th International Conference on Intelligent System Applications to Power Systems, Hersonissos, Greece (2011)

    Google Scholar 

  24. Pereira, F., Faria, P., Vale, Z.: The influence of the consumer modelling approach in demand response programs implementation. In: 2015 IEEE Eindhoven PowerTech, Eindhoven, Netherlands, 03 September 2015

    Google Scholar 

  25. Turk, Ž., Klinc, R.: Potentials of blockchain technology for construction management. In: Creative Construction Conference, CCC 2017, Primosten, Croatia (2017)

    Google Scholar 

  26. Rubio, M., Alba, A., Mendez, M., Arce-Santana, E., Rodriguez-Kessler, M.: A consensus algorithm for approximate string matching. In 2013 Iberoamerican Conference on Electronics Engineering and Computer Science, San Luis Potosí, S.L.P., México (2013)

    Google Scholar 

  27. Mathias, S.B.B.R.P., Rosset, V., Nascimento, M.C.V.: Community detection by consensus genetic-based algorithm for directed networks. In: 20th International Conference on Knowledge Based and Intelligent Information and Engineering Systems (2016)

    Google Scholar 

  28. Liua, Songsong, Papageorgiou, Lazaros G.: Multi-objective optimisation for biopharmaceutical manufacturing under uncertainty. Comput. Chem. Eng. 119, 383–393 (2018)

    Article  Google Scholar 

  29. Xu, C.: A big-data oriented recommendation method based on multi-objective. Knowl.-Based Syst. 177, 11–21 (2019)

    Article  Google Scholar 

  30. Viriyasitavat, W., Hoonsopon, D.: Blockchain characteristics and consensus in modern business. J. Ind. Inf. Integr. (2018)

    Google Scholar 

  31. Angelis, J., da Silvac, E.R.: Blockchain adoption: a value driver perspective. Bus. Horiz. (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry Arsenjev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Arsenjev, D., Baskakov, D., Shkodyrev, V. (2019). Distributed Ledger Technology and Cyber-Physical Systems. Multi-agent Systems. Concepts and Trends. In: Misra, S., et al. Computational Science and Its Applications – ICCSA 2019. ICCSA 2019. Lecture Notes in Computer Science(), vol 11620. Springer, Cham. https://doi.org/10.1007/978-3-030-24296-1_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24296-1_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24295-4

  • Online ISBN: 978-3-030-24296-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics