Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Bayesian Optimization of a Quadruped Robot During 3-Dimensional Locomotion

  • Conference paper
  • First Online:
Biomimetic and Biohybrid Systems (Living Machines 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11556))

Included in the following conference series:

  • 1982 Accesses

Abstract

Parametric search for gait controllers is a key challenge in quadruped locomotion. Several optimization methods can be adopted to find the optimal solution by regarding it as an optimization problem. Here we adopt Bayesian optimization (BO), a global optimization method that is suitable for unknown objective functions particularly when it is hard to evaluate, which is the common case of real robot experiments. We demonstrate this process on a quadruped robot capable of 3-dimensional locomotion, and our goal is to make it move forward as far as possible. While initially probing the parametric landscape, Random Search shows that in a 10-dimensional search space of over a million combinations, only \(30\%\) of them contribute to moving forward, merely \(2\%\) results in our robot walking longer than 2 m, and none of these parameters leads to more than 3 m distance. In face of such difficult landscape BO finds near-optimal parameters after 22 iterations, and walks a range of 3 m in over \(40\%\) of its iterations. Our findings illustrate that BO can efficiently search control parameters in a 3-dimensional locomotion case, and the development of controllers for legged robots, very often plagued with manual tuning of parameters, could profit from this.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Poulakakis, I., Smith, J.A., Buehler, M.: Modeling and experiments of untethered quadrupedal running with a bounding gait: the Scout II robot. Int. J. Robot. Res. 24(4), 239–256 (2005)

    Article  Google Scholar 

  2. Seok, S., Wang, A., Chuah, M.Y., Otten, D., Lang, J., Kim, S.: Design principles for highly efficient quadrupeds and implementation on the MIT Cheetah robot. In: 2013 IEEE International Conference on Robotics and Automation, pp. 3307–3312. IEEE (2013)

    Google Scholar 

  3. Ijspeert, A.J.: Central pattern generators for locomotion control in animals and robots: a review. Neural Netw. 21(4), 642–653 (2008)

    Article  Google Scholar 

  4. Calandra, R., Seyfarth, A., Peters, J., Deisenroth, M.P.: Bayesian optimization for learning gaits under uncertainty. Ann. Math. Artif. Intell. 76(1–2), 5–23 (2016)

    Article  MathSciNet  Google Scholar 

  5. Tedrake, R., Zhang, T.W., Sebastian Seung, H.: Learning to walk in 20 minutes. In: Proceedings of the Fourteenth Yale Workshop on Adaptive and Learning Systems, Beijing, vol. 95585, pp. 1939–1412 (2005)

    Google Scholar 

  6. Chernova, S., Veloso, M.: An evolutionary approach to gait learning for four-legged robots. In: 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No. 04CH37566), vol. 3, pp. 2562–2567. IEEE (2004)

    Google Scholar 

  7. Seo, K., Hyun, S., Goodman, E.D.: Genetic programming-based automatic gait generation in joint space for a quadruped robot. Adv. Robot. 24(15), 2199–2214 (2010)

    Article  Google Scholar 

  8. Oliveira, M., Santos, C., Costa, L., Ferreira, M.: Quadruped robot locomotion using a global optimization stochastic algorithm, vol. 1389, pp. 500–503 (2011)

    Google Scholar 

  9. Lizotte, D.J., Wang, T., Bowling, M.H., Schuurmans, D.: Automatic gait optimization with Gaussian process regression. In: IJCAI, vol. 7, pp. 944–949 (2007)

    Google Scholar 

  10. Saar, K.A., Rosendo, A., Llda, F.: Bayesian optimization of gaits on a bipedal slip model. In: 2017 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 1812–1817. IEEE (2017)

    Google Scholar 

  11. Calandra, R., Seyfarth, A., Peters, J., Deisenroth, M.P.: An experimental comparison of Bayesian optimization for bipedal locomotion, pp. 1951–1958 (2014)

    Google Scholar 

  12. Rai, A., Antonova, R., Song, S., Martin, W., Geyer, H., Atkeson, C.: Bayesian optimization using domain knowledge on the ATRIAS biped. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 1771–1778. IEEE (2018)

    Google Scholar 

  13. Cully, A., Clune, J., Tarapore, D., Mouret, J.-B.: Robots that can adapt like animals. Nature 521(7553), 503 (2015)

    Article  Google Scholar 

  14. Brochu, E., Cora, V.M., De Freitas, N.: A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning. arXiv preprint arXiv:1012.2599 (2010)

  15. Rasmussen, C.E.: Gaussian processes in machine learning. In: Bousquet, O., von Luxburg, U., Rätsch, G. (eds.) ML -2003. LNCS (LNAI), vol. 3176, pp. 63–71. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28650-9_4

    Chapter  Google Scholar 

  16. Rosendo, A., Von Atzigen, M., Iida, F.: The trade-off between morphology and control in the co-optimized design of robots. PLoS ONE 12(10), e0186107 (2017)

    Article  Google Scholar 

  17. Bourquin, Y., Ijspeert, A.J., Harvey, I.: Self-organization of locomotion in modular robots. Unpublished Diploma Thesis (2004). http://birg.epfl.ch/page53073.html

  18. Zhu, J., Li, S., Wang, Z., Rosendo, A.: Influences of incremental mechanical damage on the Bayesian optimization of a quadruped robot. In: 2019 IEEE International Conference on Robotics and Automation (ICRA) Workshop “Towards Real-world Development of Legged Robots”. IEEE (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiahui Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhu, J., Li, S., Wang, Z., Rosendo, A. (2019). Bayesian Optimization of a Quadruped Robot During 3-Dimensional Locomotion. In: Martinez-Hernandez, U., et al. Biomimetic and Biohybrid Systems. Living Machines 2019. Lecture Notes in Computer Science(), vol 11556. Springer, Cham. https://doi.org/10.1007/978-3-030-24741-6_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24741-6_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24740-9

  • Online ISBN: 978-3-030-24741-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics