Abstract
Good-for-Games (GFG) automata constitute a sound alternative to determinism as a way to model specifications in the Church synthesis problem. Typically, inputs for the synthesis problem are in the form of LTL formulas. However, the only known examples where GFG automata present an exponential gap in succinctness compared to deterministic ones are not LTL-definable. We show that GFG automata still enjoy exponential succinctness for LTL-definable languages. We introduce a class of properties called “eventually safe” together with a specification language \( E \nu \mathrm {TL}\) for this class. We finally give an algorithm to produce a Good-for-Games automaton from any \( E \nu \mathrm {TL}\) formula, thereby allowing synthesis for eventually safe properties.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Note that the Streett acceptance condition is not specified in [15], but it is in the relevant result of [2]. The Streett condition for \(\mathcal {D}\) is needed so that the condition of the form “\(\mathcal {A}\) accepts or \(\mathcal {D}\) rejects” is Rabin, and the game admits positional strategies.
References
Alpern, B., Schneider, F.B.: Defining liveness. Inf. Process. Lett. 21(4), 181–185 (1985)
Boker, U., Kuperberg, D., Kupferman, O., Skrzypczak, M.: Nondeterminism in the presence of a diverse or unknown future. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013. LNCS, vol. 7966, pp. 89–100. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39212-2_11
Boker, U., Kupferman, O.: Co-büching them all. In: Hofmann, M. (ed.) FoSSaCS 2011. LNCS, vol. 6604, pp. 184–198. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19805-2_13
Boker, U., Kupferman, O., Skrzypczak, M.: How deterministic are Good-For-Games automata? In: FSTTCS 2017–37th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science. Leibniz International Proceedings in Informatics (LIPIcs) (2017)
Büchi, J.R., Landweber, L.H.: Solving sequential conditions by finite-state strategies. Trans. Am. Math. Soc. 138, 295–311 (1969)
Chandra, A.K., Kozen, D., Stockmeyer, L.J.: Alternation. J. ACM 28(1), 114–133 (1981)
Diekert, V., Gastin, P.: First-order definable languages. Logic and Automata: History and Perspectives. Texts in Logic and Games, pp. 261–306. Amsterdam University Press, Amsterdam (2008)
Esparza, J., Kretínský, J., Sickert, S.: One theorem to rule them all: a unified translation of LTL into \(\omega \)-automata. In: Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2018, pp. 384–393, Oxford, UK, 09–12 July 2018
Fellah, A., Jürgensen, H., Sheng, Y.: Constructions for alternating finite automata. Int. J. Comput. Math. 35(1–4), 117–132 (1990)
Harding, A., Ryan, M., Schobbens, P.-Y.: A new algorithm for strategy synthesis in LTL games. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 477–492. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31980-1_31
Henzinger, T.A., Piterman, N.: Solving games without determinization. In: Proceedings of Computer Science Logic, 20th International Workshop, CSL2006, 15th Annual Conference of the EACSL, pp. 395–410, Szeged, Hungary, 25–29 September 2006
Klein, J., Müller, D., Baier, C., Klüppelholz, S.: Are good-for-games automata good for probabilistic model checking? In: Proceedings of Language and Automata Theory and Applications - 8th International Conference, LATA 2014, pp. 453–465, Madrid, Spain, 10–14 March 2014
Kretínský, J., Meggendorfer, T., Sickert, S., Ziegler, C.: Rabinizer 4: from LTL to your favourite deterministic automaton. In: Chockler, H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 567–577. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96145-3_30
Kuperberg, D., Majumdar, A.: Width of non-deterministic automata. In 35th International Symposium on Theoretical Aspects of Computer Science, STACS, 29th February–3rd March 2018, p. 2018, Caen, France (2018)
Kuperberg, D., Skrzypczak, M.: On determinisation of good-for-games automata. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9135, pp. 299–310. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47666-6_24
Kupferman, O., Vardi, M.Y.: From linear time to branching time. ACM Trans. Comput. Log. 6(2), 273–294 (2005)
Paige, R., Tarjan, R.E.: Three partition refinement algorithms. SIAM J. Comput. 16(6), 973–989 (1987)
Sistla, A.P.: Safety, liveness and fairness in temporal logic. Formal Aspects Comput. 6(5), 495–511 (1994)
Wilke, T.: Alternating tree automata, parity games, and modal \(\mu \)-calculus. Bull. Belg. Math. Soc. Simon Stevin 8(2), 359 (2001)
Zhu, S., Tabajara, L.M., Li, J., Pu, G., Vardi, M.Y.: A symbolic approach to safety ltl synthesis. Hardware and Software: Verification and Testing. LNCS, vol. 10629, pp. 147–162. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70389-3_10
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Iosti, S., Kuperberg, D. (2019). Eventually Safe Languages. In: Hofman, P., Skrzypczak, M. (eds) Developments in Language Theory. DLT 2019. Lecture Notes in Computer Science(), vol 11647. Springer, Cham. https://doi.org/10.1007/978-3-030-24886-4_14
Download citation
DOI: https://doi.org/10.1007/978-3-030-24886-4_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-24885-7
Online ISBN: 978-3-030-24886-4
eBook Packages: Computer ScienceComputer Science (R0)