Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Eventually Safe Languages

  • Conference paper
  • First Online:
Developments in Language Theory (DLT 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11647))

Included in the following conference series:

Abstract

Good-for-Games (GFG) automata constitute a sound alternative to determinism as a way to model specifications in the Church synthesis problem. Typically, inputs for the synthesis problem are in the form of LTL formulas. However, the only known examples where GFG automata present an exponential gap in succinctness compared to deterministic ones are not LTL-definable. We show that GFG automata still enjoy exponential succinctness for LTL-definable languages. We introduce a class of properties called “eventually safe” together with a specification language \( E \nu \mathrm {TL}\) for this class. We finally give an algorithm to produce a Good-for-Games automaton from any \( E \nu \mathrm {TL}\) formula, thereby allowing synthesis for eventually safe properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Note that the Streett acceptance condition is not specified in [15], but it is in the relevant result of [2]. The Streett condition for \(\mathcal {D}\) is needed so that the condition of the form “\(\mathcal {A}\) accepts or \(\mathcal {D}\) rejects” is Rabin, and the game admits positional strategies.

References

  1. Alpern, B., Schneider, F.B.: Defining liveness. Inf. Process. Lett. 21(4), 181–185 (1985)

    Article  MathSciNet  Google Scholar 

  2. Boker, U., Kuperberg, D., Kupferman, O., Skrzypczak, M.: Nondeterminism in the presence of a diverse or unknown future. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013. LNCS, vol. 7966, pp. 89–100. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39212-2_11

    Chapter  Google Scholar 

  3. Boker, U., Kupferman, O.: Co-büching them all. In: Hofmann, M. (ed.) FoSSaCS 2011. LNCS, vol. 6604, pp. 184–198. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19805-2_13

    Chapter  Google Scholar 

  4. Boker, U., Kupferman, O., Skrzypczak, M.: How deterministic are Good-For-Games automata? In: FSTTCS 2017–37th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science. Leibniz International Proceedings in Informatics (LIPIcs) (2017)

    Google Scholar 

  5. Büchi, J.R., Landweber, L.H.: Solving sequential conditions by finite-state strategies. Trans. Am. Math. Soc. 138, 295–311 (1969)

    Article  MathSciNet  Google Scholar 

  6. Chandra, A.K., Kozen, D., Stockmeyer, L.J.: Alternation. J. ACM 28(1), 114–133 (1981)

    Article  MathSciNet  Google Scholar 

  7. Diekert, V., Gastin, P.: First-order definable languages. Logic and Automata: History and Perspectives. Texts in Logic and Games, pp. 261–306. Amsterdam University Press, Amsterdam (2008)

    Google Scholar 

  8. Esparza, J., Kretínský, J., Sickert, S.: One theorem to rule them all: a unified translation of LTL into \(\omega \)-automata. In: Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2018, pp. 384–393, Oxford, UK, 09–12 July 2018

    Google Scholar 

  9. Fellah, A., Jürgensen, H., Sheng, Y.: Constructions for alternating finite automata. Int. J. Comput. Math. 35(1–4), 117–132 (1990)

    Article  Google Scholar 

  10. Harding, A., Ryan, M., Schobbens, P.-Y.: A new algorithm for strategy synthesis in LTL games. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 477–492. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31980-1_31

    Chapter  MATH  Google Scholar 

  11. Henzinger, T.A., Piterman, N.: Solving games without determinization. In: Proceedings of Computer Science Logic, 20th International Workshop, CSL2006, 15th Annual Conference of the EACSL, pp. 395–410, Szeged, Hungary, 25–29 September 2006

    Chapter  Google Scholar 

  12. Klein, J., Müller, D., Baier, C., Klüppelholz, S.: Are good-for-games automata good for probabilistic model checking? In: Proceedings of Language and Automata Theory and Applications - 8th International Conference, LATA 2014, pp. 453–465, Madrid, Spain, 10–14 March 2014

    Chapter  Google Scholar 

  13. Kretínský, J., Meggendorfer, T., Sickert, S., Ziegler, C.: Rabinizer 4: from LTL to your favourite deterministic automaton. In: Chockler, H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 567–577. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96145-3_30

    Chapter  Google Scholar 

  14. Kuperberg, D., Majumdar, A.: Width of non-deterministic automata. In 35th International Symposium on Theoretical Aspects of Computer Science, STACS, 29th February–3rd March 2018, p. 2018, Caen, France (2018)

    Google Scholar 

  15. Kuperberg, D., Skrzypczak, M.: On determinisation of good-for-games automata. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9135, pp. 299–310. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47666-6_24

    Chapter  MATH  Google Scholar 

  16. Kupferman, O., Vardi, M.Y.: From linear time to branching time. ACM Trans. Comput. Log. 6(2), 273–294 (2005)

    Article  MathSciNet  Google Scholar 

  17. Paige, R., Tarjan, R.E.: Three partition refinement algorithms. SIAM J. Comput. 16(6), 973–989 (1987)

    Article  MathSciNet  Google Scholar 

  18. Sistla, A.P.: Safety, liveness and fairness in temporal logic. Formal Aspects Comput. 6(5), 495–511 (1994)

    Article  Google Scholar 

  19. Wilke, T.: Alternating tree automata, parity games, and modal \(\mu \)-calculus. Bull. Belg. Math. Soc. Simon Stevin 8(2), 359 (2001)

    MathSciNet  MATH  Google Scholar 

  20. Zhu, S., Tabajara, L.M., Li, J., Pu, G., Vardi, M.Y.: A symbolic approach to safety ltl synthesis. Hardware and Software: Verification and Testing. LNCS, vol. 10629, pp. 147–162. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70389-3_10

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis Kuperberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Iosti, S., Kuperberg, D. (2019). Eventually Safe Languages. In: Hofman, P., Skrzypczak, M. (eds) Developments in Language Theory. DLT 2019. Lecture Notes in Computer Science(), vol 11647. Springer, Cham. https://doi.org/10.1007/978-3-030-24886-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24886-4_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24885-7

  • Online ISBN: 978-3-030-24886-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics