Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Partial Gathering of Mobile Agents Without Identifiers or Global Knowledge in Asynchronous Unidirectional Rings

  • Conference paper
  • First Online:
Structural Information and Communication Complexity (SIROCCO 2019)

Abstract

In this paper, we consider the partial gathering problem of mobile agents in asynchronous unidirectional rings. This problem requires that, for a given positive integer g, all the agents terminate in a configuration such that at least g agents or no agent exist at each node. While the previous work achieves move-optimal partial gathering using distinct IDs or knowledge of the number of agents, in this paper we aim to achieve this without such information. We consider deterministic and randomized cases. First, in the deterministic case, we show that unsolvable initial configurations exist. In addition, we propose an algorithm to solve the problem from any solvable initial configuration in O(gn) total number of moves, where n is the number of nodes. Next, in the randomized case, we propose an algorithm to solve the problem in O(gn) expected total number of moves from any initial configuration. Since agents require \(\varOmega (gn)\) total number of moves to solve the partial gathering problem, our algorithms can solve the problem in asymptotically optimal total number of moves without global knowledge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Even if \(a_i\) becomes inactive, it does not happen that all the active agents become inactive because we consider the case of \(\textit{peri}\ge g\).

  2. 2.

    We consider the situation for explanation, and it is possible that some agents execute the second part and the other agents still execute the first part.

References

  1. Gray, R.S., Kotz, D., Cybenko, G., Rus, D.: D’Agents: applications and performance of a mobile-agent system. Softw. Pract. Exper. 32(6), 543–573 (2002)

    Article  Google Scholar 

  2. Lange, D.B., Oshima, M.: Seven good reasons for mobile agents. CACM 42(3), 88–89 (1999)

    Article  Google Scholar 

  3. Kranakis, E., Krozanc, D., Markou, E.: The Mobile Agent Rendezvous Problem in the Ring. Synthesis Lectures on Distributed Computing Theory, vol. 1. Morgan & Claypool, San Rafael (2010)

    Google Scholar 

  4. Kranakis, E., Santoro, N., Sawchuk, C., Krizanc, D.: Mobile agent rendezvous in a ring. In: Proceedings of ICDCS, pp. 592–599 (2003)

    Google Scholar 

  5. Flocchini, P., Kranakis, E., Krizanc, D., Santoro, N., Sawchuk, C.: Multiple mobile agent rendezvous in a ring. In: Farach-Colton, M. (ed.) LATIN 2004. LNCS, vol. 2976, pp. 599–608. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24698-5_62

    Chapter  Google Scholar 

  6. Fraigniaud, P., Pelc, A.: Deterministic rendezvous in trees with little memory. In: Taubenfeld, G. (ed.) DISC 2008. LNCS, vol. 5218, pp. 242–256. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87779-0_17

    Chapter  MATH  Google Scholar 

  7. Kranakis, E., Krizanc, D., Markou, E.: Mobile agent rendezvous in a synchronous torus. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 653–664. Springer, Heidelberg (2006). https://doi.org/10.1007/11682462_60

    Chapter  Google Scholar 

  8. Dieudonné, Y., Pelc, A.: Anonymous meeting in networks. Algorithmica 74(2), 908–946 (2016)

    Article  MathSciNet  Google Scholar 

  9. Shibata, M., Kawai, S., Ooshita, F., Kakugawa, H., Masuzawa, T.: Partial gathering of mobile agents in asynchronous unidirectional rings. Theor. Comput. Sci. 617, 1–11 (2016)

    Article  MathSciNet  Google Scholar 

  10. Shibata, M., Ooshita, F., Kakugawa, H., Masuzawa, T.: Move-optimal partial gathering of mobile agents in asynchronous trees. Theor. Comput. Sci. 705, 9–30 (2018)

    Article  MathSciNet  Google Scholar 

  11. Shibata, M., Nakamura, D., Ooshita, F., Kakugawa, H., Masuzawa, T.: Partial gathering of mobile agents in arbitrary networks. IEICE Trans. Inf. Syst. 102(3), 444–453 (2019)

    Article  Google Scholar 

  12. Peterson, G.L.: An \({O (n \log n)}\) unidirectional algorithm for the circular extrema problem. ACM Trans. Program. Lang. Syst. 4(4), 758–762 (1982)

    Article  Google Scholar 

Download references

Acknowledgement

This work was partially supported by JSPS KAKENHI Grant Number 17K19977, 18K18000, 18K11167, 18K18031, and 19K11826, and Japan Science and Technology Agency (JST) SICORP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiro Shibata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shibata, M., Kawata, N., Sudo, Y., Ooshita, F., Kakugawa, H., Masuzawa, T. (2019). Partial Gathering of Mobile Agents Without Identifiers or Global Knowledge in Asynchronous Unidirectional Rings. In: Censor-Hillel, K., Flammini, M. (eds) Structural Information and Communication Complexity. SIROCCO 2019. Lecture Notes in Computer Science(), vol 11639. Springer, Cham. https://doi.org/10.1007/978-3-030-24922-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24922-9_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24921-2

  • Online ISBN: 978-3-030-24922-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics