Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

An Analysis of Control Parameter Importance in the Particle Swarm Optimization Algorithm

  • Conference paper
  • First Online:
Advances in Swarm Intelligence (ICSI 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11655))

Included in the following conference series:

  • 1196 Accesses

Abstract

Particle swarm optimization (PSO) is a stochastic search algorithm based on the social dynamics of a flock of birds. The performance of the PSO algorithm is known to be sensitive to the values assigned to its control parameters, and appropriate tuning of these control parameters can greatly improve performance. This paper employs function analysis of variance (fANOVA) to quantify the importance of each of the three conventional PSO control parameters, namely the inertia weight (\(\omega \)), the cognitive acceleration coefficient (\(c_1\)), and the social acceleration coefficient (\(c_2\)), according to their respective variances associated with the fitness. Results indicate that the inertia value, \(\omega \), has the greatest sensitivity to its assigned value and thus is the most important parameter to tune when optimizing PSO performance for low dimensional problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Assuming the control parameter values are continuous.

References

  1. Beielstein, T.: Tuning PSO parameters through sensitivity analysis. Technical report, Universitat Dortmund (2002)

    Google Scholar 

  2. van den Bergh, F., Engelbrecht, A.P.: A study of particle swarm optimization particle trajectories. Inf. Sci. 176(8), 937–971 (2006)

    Article  MathSciNet  Google Scholar 

  3. Bergh, F.V.D.: An analysis of particle swarm optimizers. Ph.D. thesis, University of Pretoria (2001)

    Google Scholar 

  4. Birattari, M., Yuan, Z., Balaprakash, P., Stützle, T.: F-Race and iterated F-Race: an overview. In: Bartz-Beielstein, T., Chiarandini, M., Paquete, L., Preuss, M. (eds.) Experimental Methods for the Analysis of Optimization Algorithms, pp. 311–336. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-02538-9_13

    Chapter  Google Scholar 

  5. Bonyadi, M., Michalewicz, Z.: Impacts of coefficients on movement patterns in the particle swarm optimization algorithm. IEEE Trans. Evol. Comput. 21(3), 1–1 (2016)

    Article  Google Scholar 

  6. Bratton, D., Kennedy, J.: Defining a standard for particle swarm optimization. In: 2007 IEEE Swarm Intelligence Symposium, pp. 120–127. IEEE (2007)

    Google Scholar 

  7. Carlisle, A., Dozier, G.: An off-the-shelf PSO. In: Proceedings of the Workshop on Particle Swarm Optimization, vol. 1, pp. 1–6. Purdue School of Engineering and Technology (2001)

    Google Scholar 

  8. Cleghorn, C.W., Engelbrecht, A.: Particle swarm optimizer: the impact of unstable particles on performance. In: 2016 IEEE Symposium Series on Computational Intelligence, pp. 1–7. IEEE (2016)

    Google Scholar 

  9. Cleghorn, C.W., Engelbrecht, A.P.: Particle swarm stability: a theoretical extension using the non-stagnate distribution assumption. Swarm Intell. 12, 1–22 (2017)

    Article  Google Scholar 

  10. Eberhart, R., Shi, Y.: Comparing inertia weights and constriction factors in particle swarm optimization. In: Proceedings of the 2000 Congress on Evolutionary Computation, vol. 1, pp. 84–88. IEEE (2000)

    Google Scholar 

  11. Engelbrecht, A.: Particle swarm optimization: velocity initialization. In: 2012 IEEE Congress on Evolutionary Computation, pp. 1–8. IEEE (2012)

    Google Scholar 

  12. Harrison, K.R., Engelbrecht, A.P., Ombuki-Berman, B.M.: Inertia weight control strategies for particle swarm optimization. Swarm Intell. 10(4), 267–305 (2016)

    Article  Google Scholar 

  13. Harrison, K.R., Engelbrecht, A.P., Ombuki-Berman, B.M.: The sad state of self-adaptive particle swarm optimizers. In: Proceedings of the 2016 IEEE Congress on Evolutionary Computation, pp. 431–439. IEEE (2016)

    Google Scholar 

  14. Harrison, K.R., Engelbrecht, A.P., Ombuki-Berman, B.M.: Optimal parameter regions and the time-dependence of control parameter values for the particle swarm optimization algorithm. Swarm Evol. Comput. 41, 20–35 (2018)

    Article  Google Scholar 

  15. Harrison, K.R., Engelbrecht, A.P., Ombuki-Berman, B.M.: Self-adaptive particle swarm optimization: a review and analysis of convergence. Swarm Intell. 12(3), 187–226 (2018)

    Article  Google Scholar 

  16. Hutter, F., Hoos, H., Leyton-brown, K.: An efficient approach for assessing hyperparameter importance. In: Proceedings of the 31st International Conference on Machine Learning, vol. 32, pp. 754–762. ACM (2014)

    Google Scholar 

  17. Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: ParamILS: an automatic algorithm configuration framework. J. Artif. Intell. Res. 36, 267–306 (2009)

    Article  Google Scholar 

  18. Jiang, M., Luo, Y., Yang, S.: Particle swarm optimization - stochastic trajectory analysis and parameter selection. In: Swarm Intelligence, Focus on Ant and Particle Swarm Optimization, pp. 179–198. No. December, I-TechEducation and Publishing (2007)

    Google Scholar 

  19. Jiang, M., Luo, Y., Yang, S.: Stochastic convergence analysis and parameter selection of the standard particle swarm optimization algorithm. Inf. Process. Lett. 102(1), 8–16 (2007)

    Article  MathSciNet  Google Scholar 

  20. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the International Conference on Neural Networks, vol. 4, pp. 1942–1948. IEEE (1995)

    Google Scholar 

  21. Kennedy, J., Mendes, R.: Population structure and particle swarm performance. In: Proceedings of the 2002 Congress on Evolutionary Computation, vol. 2, pp. 1671–1676. IEEE (2002)

    Google Scholar 

  22. Kushner, H.J.: A new method of locating the maximum point of an arbitrary multipeak curve in the presence of noise. J. Fluids Eng. 86(1), 97–106 (1964)

    Google Scholar 

  23. Liu, Q.: Order-2 stability analysis of particle swarm optimization. Evol. Comput. 23(2), 187–216 (2015)

    Article  Google Scholar 

  24. Pushak, Y., Hoos, H.: Algorithm configuration landscapes. In: Auger, A., Fonseca, C.M., Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds.) PPSN 2018. LNCS, vol. 11102, pp. 271–283. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99259-4_22

    Chapter  Google Scholar 

  25. Ratnaweera, A., Halgamuge, S., Watson, H.: Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Trans. Evol. Comput. 8(3), 240–255 (2004)

    Article  Google Scholar 

  26. Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: Proceedings of the 1998 IEEE International Conference on Evolutionary Computation, pp. 69–73. IEEE (1998)

    Google Scholar 

  27. Sobol, I.: Sensitivity estimates for nonlinear mathematical models. Math. Modell. Comput. Exper. 1(4), 407–414 (1993)

    MathSciNet  MATH  Google Scholar 

  28. Tanweer, M., Suresh, S., Sundararajan, N.: Self regulating particle swarm optimization algorithm. Inf. Sci. 294, 182–202 (2015)

    Article  MathSciNet  Google Scholar 

  29. Trelea, I.C.: The particle swarm optimization algorithm: convergence analysis and parameter selection. Inf. Process. Lett. 85(6), 317–325 (2003)

    Article  MathSciNet  Google Scholar 

  30. Xu, G.: An adaptive parameter tuning of particle swarm optimization algorithm. Appl. Math. Comput. 219(9), 4560–4569 (2013)

    MathSciNet  MATH  Google Scholar 

  31. Zhan, Z.H., Zhang, J., Li, Y., Chung, H.S.H.: Adaptive particle swarm optimization. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 39(6), 1362–1381 (2009)

    Article  Google Scholar 

  32. Zhang, W., Ma, D., Wei, J.J., Liang, H.F.: A parameter selection strategy for particle swarm optimization based on particle positions. Expert Syst. Appl. 41(7), 3576–3584 (2014)

    Article  Google Scholar 

  33. van Zyl, E.T., Engelbrecht, A.P.: Comparison of self-adaptive particle swarm optimizers. In: Proceedings of the 2014 IEEE Symposium on Swarm Intelligence, pp. 1–9. IEEE (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyle Robert Harrison .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Harrison, K.R., Ombuki-Berman, B.M., Engelbrecht, A.P. (2019). An Analysis of Control Parameter Importance in the Particle Swarm Optimization Algorithm. In: Tan, Y., Shi, Y., Niu, B. (eds) Advances in Swarm Intelligence. ICSI 2019. Lecture Notes in Computer Science(), vol 11655. Springer, Cham. https://doi.org/10.1007/978-3-030-26369-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26369-0_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26368-3

  • Online ISBN: 978-3-030-26369-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics