Abstract
Particle swarm optimization (PSO) is a stochastic search algorithm based on the social dynamics of a flock of birds. The performance of the PSO algorithm is known to be sensitive to the values assigned to its control parameters, and appropriate tuning of these control parameters can greatly improve performance. This paper employs function analysis of variance (fANOVA) to quantify the importance of each of the three conventional PSO control parameters, namely the inertia weight (\(\omega \)), the cognitive acceleration coefficient (\(c_1\)), and the social acceleration coefficient (\(c_2\)), according to their respective variances associated with the fitness. Results indicate that the inertia value, \(\omega \), has the greatest sensitivity to its assigned value and thus is the most important parameter to tune when optimizing PSO performance for low dimensional problems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Assuming the control parameter values are continuous.
References
Beielstein, T.: Tuning PSO parameters through sensitivity analysis. Technical report, Universitat Dortmund (2002)
van den Bergh, F., Engelbrecht, A.P.: A study of particle swarm optimization particle trajectories. Inf. Sci. 176(8), 937–971 (2006)
Bergh, F.V.D.: An analysis of particle swarm optimizers. Ph.D. thesis, University of Pretoria (2001)
Birattari, M., Yuan, Z., Balaprakash, P., Stützle, T.: F-Race and iterated F-Race: an overview. In: Bartz-Beielstein, T., Chiarandini, M., Paquete, L., Preuss, M. (eds.) Experimental Methods for the Analysis of Optimization Algorithms, pp. 311–336. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-02538-9_13
Bonyadi, M., Michalewicz, Z.: Impacts of coefficients on movement patterns in the particle swarm optimization algorithm. IEEE Trans. Evol. Comput. 21(3), 1–1 (2016)
Bratton, D., Kennedy, J.: Defining a standard for particle swarm optimization. In: 2007 IEEE Swarm Intelligence Symposium, pp. 120–127. IEEE (2007)
Carlisle, A., Dozier, G.: An off-the-shelf PSO. In: Proceedings of the Workshop on Particle Swarm Optimization, vol. 1, pp. 1–6. Purdue School of Engineering and Technology (2001)
Cleghorn, C.W., Engelbrecht, A.: Particle swarm optimizer: the impact of unstable particles on performance. In: 2016 IEEE Symposium Series on Computational Intelligence, pp. 1–7. IEEE (2016)
Cleghorn, C.W., Engelbrecht, A.P.: Particle swarm stability: a theoretical extension using the non-stagnate distribution assumption. Swarm Intell. 12, 1–22 (2017)
Eberhart, R., Shi, Y.: Comparing inertia weights and constriction factors in particle swarm optimization. In: Proceedings of the 2000 Congress on Evolutionary Computation, vol. 1, pp. 84–88. IEEE (2000)
Engelbrecht, A.: Particle swarm optimization: velocity initialization. In: 2012 IEEE Congress on Evolutionary Computation, pp. 1–8. IEEE (2012)
Harrison, K.R., Engelbrecht, A.P., Ombuki-Berman, B.M.: Inertia weight control strategies for particle swarm optimization. Swarm Intell. 10(4), 267–305 (2016)
Harrison, K.R., Engelbrecht, A.P., Ombuki-Berman, B.M.: The sad state of self-adaptive particle swarm optimizers. In: Proceedings of the 2016 IEEE Congress on Evolutionary Computation, pp. 431–439. IEEE (2016)
Harrison, K.R., Engelbrecht, A.P., Ombuki-Berman, B.M.: Optimal parameter regions and the time-dependence of control parameter values for the particle swarm optimization algorithm. Swarm Evol. Comput. 41, 20–35 (2018)
Harrison, K.R., Engelbrecht, A.P., Ombuki-Berman, B.M.: Self-adaptive particle swarm optimization: a review and analysis of convergence. Swarm Intell. 12(3), 187–226 (2018)
Hutter, F., Hoos, H., Leyton-brown, K.: An efficient approach for assessing hyperparameter importance. In: Proceedings of the 31st International Conference on Machine Learning, vol. 32, pp. 754–762. ACM (2014)
Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: ParamILS: an automatic algorithm configuration framework. J. Artif. Intell. Res. 36, 267–306 (2009)
Jiang, M., Luo, Y., Yang, S.: Particle swarm optimization - stochastic trajectory analysis and parameter selection. In: Swarm Intelligence, Focus on Ant and Particle Swarm Optimization, pp. 179–198. No. December, I-TechEducation and Publishing (2007)
Jiang, M., Luo, Y., Yang, S.: Stochastic convergence analysis and parameter selection of the standard particle swarm optimization algorithm. Inf. Process. Lett. 102(1), 8–16 (2007)
Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the International Conference on Neural Networks, vol. 4, pp. 1942–1948. IEEE (1995)
Kennedy, J., Mendes, R.: Population structure and particle swarm performance. In: Proceedings of the 2002 Congress on Evolutionary Computation, vol. 2, pp. 1671–1676. IEEE (2002)
Kushner, H.J.: A new method of locating the maximum point of an arbitrary multipeak curve in the presence of noise. J. Fluids Eng. 86(1), 97–106 (1964)
Liu, Q.: Order-2 stability analysis of particle swarm optimization. Evol. Comput. 23(2), 187–216 (2015)
Pushak, Y., Hoos, H.: Algorithm configuration landscapes. In: Auger, A., Fonseca, C.M., Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds.) PPSN 2018. LNCS, vol. 11102, pp. 271–283. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99259-4_22
Ratnaweera, A., Halgamuge, S., Watson, H.: Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Trans. Evol. Comput. 8(3), 240–255 (2004)
Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: Proceedings of the 1998 IEEE International Conference on Evolutionary Computation, pp. 69–73. IEEE (1998)
Sobol, I.: Sensitivity estimates for nonlinear mathematical models. Math. Modell. Comput. Exper. 1(4), 407–414 (1993)
Tanweer, M., Suresh, S., Sundararajan, N.: Self regulating particle swarm optimization algorithm. Inf. Sci. 294, 182–202 (2015)
Trelea, I.C.: The particle swarm optimization algorithm: convergence analysis and parameter selection. Inf. Process. Lett. 85(6), 317–325 (2003)
Xu, G.: An adaptive parameter tuning of particle swarm optimization algorithm. Appl. Math. Comput. 219(9), 4560–4569 (2013)
Zhan, Z.H., Zhang, J., Li, Y., Chung, H.S.H.: Adaptive particle swarm optimization. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 39(6), 1362–1381 (2009)
Zhang, W., Ma, D., Wei, J.J., Liang, H.F.: A parameter selection strategy for particle swarm optimization based on particle positions. Expert Syst. Appl. 41(7), 3576–3584 (2014)
van Zyl, E.T., Engelbrecht, A.P.: Comparison of self-adaptive particle swarm optimizers. In: Proceedings of the 2014 IEEE Symposium on Swarm Intelligence, pp. 1–9. IEEE (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Harrison, K.R., Ombuki-Berman, B.M., Engelbrecht, A.P. (2019). An Analysis of Control Parameter Importance in the Particle Swarm Optimization Algorithm. In: Tan, Y., Shi, Y., Niu, B. (eds) Advances in Swarm Intelligence. ICSI 2019. Lecture Notes in Computer Science(), vol 11655. Springer, Cham. https://doi.org/10.1007/978-3-030-26369-0_9
Download citation
DOI: https://doi.org/10.1007/978-3-030-26369-0_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-26368-3
Online ISBN: 978-3-030-26369-0
eBook Packages: Computer ScienceComputer Science (R0)