Abstract
We finally close the long-standing problem of constructing a noninteractive zero-knowledge (NIZK) proof system for any NP language with security based on the plain Learning With Errors (LWE) problem, and thereby on worst-case lattice problems. Our proof system instantiates the framework recently developed by Canetti et al. [EUROCRYPT’18], Holmgren and Lombardi [FOCS’18], and Canetti et al. [STOC’19] for soundly applying the Fiat–Shamir transform using a hash function family that is correlation intractable for a suitable class of relations. Previously, such hash families were based either on “exotic” assumptions (e.g., indistinguishability obfuscation or optimal hardness of certain LWE variants) or, more recently, on the existence of circularly secure fully homomorphic encryption (FHE). However, none of these assumptions are known to be implied by plain LWE or worst-case hardness.
Our main technical contribution is a hash family that is correlation intractable for arbitrary size-S circuits, for any polynomially bounded S, based on plain LWE (with small polynomial approximation factors). The construction combines two novel ingredients: a correlation-intractable hash family for log-depth circuits based on LWE (or even the potentially harder Short Integer Solution problem), and a “bootstrapping” transform that uses (leveled) FHE to promote correlation intractability for the FHE decryption circuit to arbitrary (bounded) circuits. Our construction can be instantiated in two possible “modes,” yielding a NIZK that is either computationally sound and statistically zero knowledge in the common random string model, or vice-versa in the common reference string model.
This material is based upon work supported by the National Science Foundation under CAREER Award CCF-1054495 and CNS-1606362. The views expressed are those of the authors and do not necessarily reflect the official policy or position of the National Science Foundation or the Sloan Foundation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
For simplicity, here we assume that \(\mathsf {FHE} \) supports unbounded, not just leveled, homomorphic evaluation. Adapting the construction to leveled FHE is straightforward because \(\mathsf {Eval} \) is used only on circuits of bounded depth.
- 2.
The reader might notice that the specific function \(\mathsf {Dec} _{sk}\) is not fixed in advance, but is instead chosen at random by the reduction. This is addressed in the non-uniform setting by “fixing coins” for \(\mathsf {FHE} {.}\mathsf {Gen} \) that maximize the attacker’s success probability, or in the uniform setting by adopting a security definition that lets the adversary declare a (valid) target function before receiving the hash key.
- 3.
Those familiar with the literature will recognize this as the linear transform induced by the “gadget” matrix \(\mathbf {G}\).
- 4.
With this change, the SIS-based proof still goes through, thanks to the technique for ensuring that \(\mathbf {r}\ne \mathbf {0}\).
- 5.
References
Ajtai, M.: Generating hard instances of lattice problems. Quaderni di Matematica 13, 1–32 (2004). Preliminary version in STOC 1996
Alamati, N., Peikert, C., Stephens-Davidowitz, N.: New (and old) proof systems for lattice problems. In: Abdalla, M., Dahab, R. (eds.) PKC 2018. LNCS, vol. 10770, pp. 619–643. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76581-5_21
Alperin-Sheriff, J., Peikert, C.: Faster bootstrapping with polynomial error. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 297–314. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2_17
Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives and circular-secure encryption based on hard learning problems. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8_35
Barrington, D.A.M.: Bounded-width polynomial-size branching programs recognize exactly those languages in NC\(^1\). J. Comput. Syst. Sci. 38(1), 150–164 (1989). Preliminary version in STOC 1986
Bellare, M., Goldwasser, S.: New paradigms for digital signatures and message authentication based on non-interactive zero knowledge proofs. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 194–211. Springer, New York (1990). https://doi.org/10.1007/0-387-34805-0_19
Ben-Sasson, E., et al.: Zerocash: decentralized anonymous payments from Bitcoin. In: 2014 IEEE Symposium on Security and Privacy, SP 2014, Berkeley, 18–21 May 2014, pp. 459–474 (2014)
Blum, M., De Santis, A., Micali, S., Persiano, G.: Noninteractive zero-knowledge. SIAM J. Comput. 20(6), 1084–1118 (1991). Preliminary version in STOC 1988
Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its applications (extended abstract). In: STOC, pp. 103–112 (1988)
Boneh, D., et al.: Fully key-homomorphic encryption, arithmetic circuit ABE and compact garbled circuits. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 533–556. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_30
Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic encryption without bootstrapping. In: ITCS, pp. 309–325 (2012)
Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness of learning with errors. In: STOC, pp. 575–584 (2013)
Brakerski, Z., Vaikuntanathan, V.: Lattice-based FHE as secure as PKE. In: ITCS, pp. 1–12 (2014)
Camenisch, J., Chandran, N., Shoup, V.: A public key encryption scheme secure against key dependent chosen plaintext and adaptive chosen ciphertext attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 351–368. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01001-9_20
Canetti, R., et al.: Fiat-Shamir: from practice to theory. In: STOC, pp. 1082–1090 (2019)
Canetti, R., Chen, Y., Reyzin, L., Rothblum, R.D.: Fiat-Shamir and correlation intractability from strong KDM-secure encryption. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 91–122. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9_4
Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited. J. ACM 51(4), 557–594 (2004). Preliminary version in STOC 1998
Chung, K., Dadush, D., Liu, F., Peikert, C.: On the lattice smoothing parameter problem. In: IEEE Conference on Computational Complexity, pp. 230–241 (2013)
Dwork, C., Naor, M.: Zaps and their applications. SIAM J. Comput. 36(6), 1513–1543 (2007)
Feige, U., Lapidot, D., Shamir, A.: Multiple noninteractive zero knowledge proofs under general assumptions. SIAM J. Comput. 29(1), 1–28 (1999). Preliminary version in FOCS 1990
Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7_12
Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: FOCS, pp. 40–49 (2013)
Gentry, C.: A fully homomorphic encryption scheme. Ph.D. thesis, Stanford University (2009). http://crypto.stanford.edu/craig
Gentry, C., Groth, J., Ishai, Y., Peikert, C., Sahai, A., Smith, A.D.: Using fully homomorphic hybrid encryption to minimize non-interative zero-knowledge proofs. J. Cryptol. 28(4), 820–843 (2015)
Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_5
Goldreich, O., Oren, Y.: Definitions and properties of zero-knowledge proof systems. J. Cryptol. 7(1), 1–32 (1994)
Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems. SIAM J. Comput. 18(1), 186–208 (1989). Preliminary version in STOC 1985
Gorbunov, S., Vaikuntanathan, V., Wichs, D.: Leveled fully homomorphic signatures from standard lattices. In: STOC, pp. 469–477 (2015)
Groth, J., Ostrovsky, R., Sahai, A.: New techniques for noninteractive zero-knowledge. J. ACM 59(3), 11:1–11:35 (2012). Preliminary version in EUROCRYPT 2006
Holmgren, J., Lombardi, A.: Cryptographic hashing from strong one-way functions (or: One-way product functions and their applications). In: FOCS, pp. 850–858 (2018)
Kalai, Y.T., Rothblum, G.N., Rothblum, R.D.: From obfuscation to the security of Fiat-Shamir for proofs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10402, pp. 224–251. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63715-0_8
Kim, S., Wu, D.J.: Multi-theorem preprocessing NIZKs from lattices. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 733–765. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0_25
Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_41
Micciancio, D., Regev, O.: Worst-case to average-case reductions based on Gaussian measures. SIAM J. Comput. 37(1), 267–302 (2007). Preliminary version in FOCS 2004
Micciancio, D., Vadhan, S.P.: Statistical zero-knowledge proofs with efficient provers: lattice problems and more. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 282–298. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_17
Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen ciphertext attacks. In: STOC, pp. 427–437 (1990)
Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem. In: STOC, pp. 333–342 (2009)
Peikert, C., Regev, O., Stephens-Davidowitz, N.: Pseudorandomness of Ring-LWE for any ring and modulus. In: STOC, pp. 461–473 (2017)
Peikert, C., Vaikuntanathan, V.: Noninteractive statistical zero-knowledge proofs for lattice problems. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 536–553. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5_30
Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and composable oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 554–571. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5_31
Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. SIAM J. Comput. 40(6), 1803–1844 (2011). Preliminary version in STOC 2008
Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. J. ACM 56(6), 1–40 (2009). Preliminary version in STOC 2005
Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryption, and more. In: STOC, pp. 475–484 (2014)
Acknowledgments
We thank Alex Lombardi and Daniel Wichs for useful comments.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 International Association for Cryptologic Research
About this paper
Cite this paper
Peikert, C., Shiehian, S. (2019). Noninteractive Zero Knowledge for NP from (Plain) Learning with Errors. In: Boldyreva, A., Micciancio, D. (eds) Advances in Cryptology – CRYPTO 2019. CRYPTO 2019. Lecture Notes in Computer Science(), vol 11692. Springer, Cham. https://doi.org/10.1007/978-3-030-26948-7_4
Download citation
DOI: https://doi.org/10.1007/978-3-030-26948-7_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-26947-0
Online ISBN: 978-3-030-26948-7
eBook Packages: Computer ScienceComputer Science (R0)