Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Discovering Driver Mutation Profiles in Cancer with a Local Centrality Score

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11644))

Included in the following conference series:

  • 1476 Accesses

Abstract

Although there are huge volumes of genomic data, how to integrate and analyze cancer omics data and identify driver genes is still a challenging task. Many published approaches have made great achievements in distinguishing driver genes from passenger genes, but the identification accuracy of driver genes needs to be improved. In this paper, we adopt a semi-local centrality measure to assess the impact of gene mutations on the changes in gene expression patterns. We consider mutated gene as source node and differentially expressed genes as target nodes in the transcriptional network. Firstly, we get differentially expression genes in the cohort by comparing tumor sample expression profiles with normal sample. Secondly, we construct a local network for each mutation gene using DEGs and mutation genes according to protein-protein interaction (PPI) network. Thirdly, we calculate each mutation genes’ local centrality in the constructed network. Finally, we rank and select the driver genes from mutation genes according to its local centrality. We apply our method on five cancer datasets to identify influential genes in local network. Experimental results show that a stronger enrichment for true positive driver genes can be obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhang, J., Zhang, S.: The discovery of mutated driver pathways in cancer: models and algorithms. IEEE/ACM Trans. Comput. Biol. Bioinform. PP(99), 1 (2018)

    Google Scholar 

  2. Wang, D., et al.: An NMF-L2,1-norm constraint method for characteristic gene selection. PLoS ONE 11(7), e0158494 (2016)

    Article  Google Scholar 

  3. Campbell, I.M., et al.: Somatic mosaicism: implications for disease and transmission genetics. Trends Genet. 31(7), 382–392 (2015)

    Article  Google Scholar 

  4. Dees, N.D., et al.: MuSiC: identifying mutational significance in cancer genomes. Genome Res. 22(8), 1589–1598 (2012)

    Article  Google Scholar 

  5. Guo, W.F., et al.: Discovering personalized driver mutation profiles of single samples in cancer by network control strategy. Bioinformatics 34(11), 1893 (2018)

    Article  Google Scholar 

  6. Haber, D.A., Settleman, J.: Cancer: drivers and passengers. Nature 446(7132), 145–146 (2007)

    Article  Google Scholar 

  7. Chin, L., Andersen, J.N., Futreal, P.A.: Cancer genomics: from discovery science to personalized medicine. Nat. Med. 17(3), 297–303 (2011)

    Article  Google Scholar 

  8. Schilsky, R.L.: Personalized medicine in oncology: the future is now. Nat. Rev. Drug Discov. 9(5), 363–366 (2010)

    Article  Google Scholar 

  9. Chris, G., et al.: Statistical analysis of pathogenicity of somatic mutations in cancer. Genetics 173(4), 2187 (2006)

    Article  Google Scholar 

  10. Gad, G., et al.: Comment on “The consensus coding sequences of human breast and colorectal cancers”. Science 317(5844), 1500 (2007)

    Google Scholar 

  11. Ahrim, Y., Richard, S.: Identifying cancer driver genes in tumor genome sequencing studies. Bioinformatics 27(2), 175–181 (2011)

    Article  Google Scholar 

  12. Lawrence, M.S., et al.: Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499(7457), 214 (2013)

    Article  Google Scholar 

  13. Carter, H., et al.: Cancer-specific high-throughput annotation of somatic mutations: computational prediction of driver missense mutations. Cancer Res. 69(16), 6660–6667 (2009)

    Article  Google Scholar 

  14. Kumar, R.D., Swamidass, S.J., Bose, R.: Unsupervised detection of cancer driver mutations with parsimony-guided learning. Nat. Genet. 48(10), 1288 (2016)

    Article  Google Scholar 

  15. Mao, Y., et al.: CanDrA: cancer-specific driver missense mutation annotation with optimized features. PLoS ONE 8(10), e77945 (2013)

    Article  Google Scholar 

  16. Bashashati, A., et al.: DriverNet: uncovering the impact of somatic driver mutations on transcriptional networks in cancer. Genome Biol. 13(12), R124 (2012)

    Article  Google Scholar 

  17. Bertrand, D., et al.: Patient-specific driver gene prediction and risk assessment through integrated network analysis of cancer omics profiles. Nucleic Acids Res. 43(7), e44 (2015)

    Article  Google Scholar 

  18. Greenman, C., et al.: Patterns of somatic mutation in human cancer genomes. Eur. J. Cancer Suppl. 6(9), 153–158 (2007)

    Google Scholar 

  19. Hou, J.P., Ma, J.: DawnRank: discovering personalized driver genes in cancer. Genome Med. 6(7), 56 (2014)

    Article  Google Scholar 

  20. Kang, H., et al.: Inferring sequential order of somatic mutations during tumorgenesis based on markov chain model. IEEE/ACM Trans. Comput. Biol. Bioinform. 12(5), 1094–1103 (2015)

    Article  Google Scholar 

  21. Suo, C., et al.: Integration of somatic mutation, expression and functional data reveals potential driver genes predictive of breast cancer survival. Bioinformatics 31(16), 2607–2613 (2015)

    Article  Google Scholar 

  22. Zhang, S.Y., et al.: m6A-Driver: identifying context-specific mRNA m6A methylation-driven gene interaction networks. PLoS Comput. Biol. 12(12), e1005287 (2016)

    Article  Google Scholar 

  23. Ciriello, G., et al.: Mutual exclusivity analysis identifies oncogenic network modules. Genome Res. 22(2), 398 (2012)

    Article  Google Scholar 

  24. Vandin, F., Upfal, E., Raphael, B.J.: De novo discovery of mutated driver pathways in cancer. Genome Res. 22(2), 375–385 (2012)

    Article  Google Scholar 

  25. Azuaje, F.J., et al.: Information encoded in a network of inflammation proteins predicts clinical outcome after myocardial infarction. BMC Med. Genomics 4(1), 59 (2011)

    Article  Google Scholar 

  26. Dewey, F.E., et al.: Gene coexpression network topology of cardiac development, hypertrophy, and failure. Circ. Cardiovasc. Genet. 4(1), 26 (2011)

    Article  Google Scholar 

  27. Azuaje, F., et al.: Analysis of a gene co-expression network establishes robust association; between Col5a2 and ischemic heart disease. BMC Med. Genomics 6(1), 13 (2013)

    Article  Google Scholar 

  28. Chen, D., et al.: Identifying influential nodes in complex networks. Phys. Stat. Mech. Appl. 391(4), 1777–1787 (2012)

    Article  Google Scholar 

  29. LĂĽ, L., et al.: Leaders in social networks, the delicious case. PLoS ONE 6(6), e21202 (2011)

    Article  Google Scholar 

  30. Brin, S., Page, L.: The anatomy of a large-scale hypertextual Web search engine. Comput. Netw. 56(18), 3825–3833 (2012)

    Article  Google Scholar 

  31. Radicchi, F., et al.: Diffusion of scientific credits and the ranking of scientists. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 80(2), 056103 (2009)

    Article  MathSciNet  Google Scholar 

  32. Lee, S.H., et al.: Googling Social Interactions: Web Search Engine Based Social Network Construction. PLoS ONE 5(7), e11233 (2010)

    Article  Google Scholar 

  33. Shrestha, R., et al.: HIT’nDRIVE: patient-specific multi-driver gene prioritization for precision oncology. Genome Res. 27(9), 1573 (2017)

    Article  Google Scholar 

  34. Futreal, P.A., et al.: A census of human cancer genes. Nat. Rev. Cancer 4(3), 177 (2004)

    Article  Google Scholar 

  35. Wei, X., et al.: Exome sequencing identifies GRIN2A as frequently mutated in melanoma. Nat. Genet. 43(5), 442–446 (2011)

    Article  MathSciNet  Google Scholar 

  36. Cotto, K.C., et al.: DGIdb 3.0: a redesign and expansion of the drug–gene interaction database. Nucleic Acids Res. 46, D1068–D1073 (2017)

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the paper materials used for experiments.

Funding

This research was funded by the National Natural Science Foundation of China (Nos. 61873001, 61672037, 61602142, 61861146002, and 61520106006), the Key Project of Anhui Provincial Education Department (No. KJ2017ZD01), the Natural Science Foundation of Anhui Province (1808085QF209).

Author information

Authors and Affiliations

Authors

Contributions

YH carried out the experiments, analyses presented in this work and wrote the manuscript. PJW carried out the data analysis. JX, HBW, JW and CHZ helped with project design, edited the manuscript and provided guidance and feedback throughout. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Chun-Hou Zheng .

Editor information

Editors and Affiliations

Ethics declarations

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hui, Y., Wei, PJ., Xia, JF., Wang, HB., Wang, J., Zheng, CH. (2019). Discovering Driver Mutation Profiles in Cancer with a Local Centrality Score. In: Huang, DS., Jo, KH., Huang, ZK. (eds) Intelligent Computing Theories and Application. ICIC 2019. Lecture Notes in Computer Science(), vol 11644. Springer, Cham. https://doi.org/10.1007/978-3-030-26969-2_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26969-2_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26968-5

  • Online ISBN: 978-3-030-26969-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics