Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Novel Method to Predict Protein Regions Driving Cancer Through Integration of Multi-omics Data

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11644))

Included in the following conference series:

Abstract

Identifying cancer drivers is critical to advancing cancer research and personalized medicine. Most methods for identifying cancer drivers focus on the entire genes or a single mutation site. But not all mutations in a gene have the same effect, the consequences of which usually depend on the position in the protein and amino acid change. The intermediate level of analysis between individual locations and the entire gene may give us better statistics and better resolution than the former. Here, we developed prDriver, a Bayesian hierarchical modeling method that identifies regions of proteins with high functional impact scores and significant effects on gene expression levels. Our study highlights the importance of integrating multi-omics data in predicting cancer driver and provides a statistically rigorous solution for cancer target discovery and development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lu, X., Lu, J., Liao, B., Li, X., Qian, X., Li, K.: Driver pattern identification over the gene co-expression of drug response in ovarian cancer by integrating high throughput genomics data. Sci. Rep. 7(1), 16188 (2017)

    Article  Google Scholar 

  2. Stratton, M.R., Campbell, P.J., Futreal, P.A.: The cancer genome. Nature 458(7239), 719 (2009)

    Article  Google Scholar 

  3. Lawrence, M.S., et al.: Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499(7457), 214 (2013)

    Article  Google Scholar 

  4. Gonzalez-Perez, A., Lopez-Bigas, N.: Functional impact bias reveals cancer drivers. Nucleic Acids Res. 40(21), e169–e169 (2012)

    Article  Google Scholar 

  5. Tamborero, D., Gonzalez-Perez, A., Lopez-Bigas, N.: OncodriveCLUST: exploiting the positional clustering of somatic mutations to identify cancer genes. Bioinformatics 29(18), 2238–2244 (2013)

    Article  Google Scholar 

  6. Ding, J., et al.: Systematic analysis of somatic mutations impacting gene expression in 12 tumour types. Nat. Commun. 6, 8554 (2015)

    Article  Google Scholar 

  7. Ng, P.C., Henikoff, S.: SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res. 31(13), 3812–3814 (2003)

    Article  Google Scholar 

  8. Choi, Y., Chan, A.P.: PROVEAN web server: a tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics 31(16), 2745–2747 (2015)

    Article  Google Scholar 

  9. Porta-Pardo, E., Godzik, A.: e-Driver: a novel method to identify protein regions driving cancer. Bioinformatics 30(21), 3109–3114 (2014)

    Article  Google Scholar 

  10. Lu, X., Qian, X., Li, X., Miao, Q., Peng, S.: DMCM: a data-adaptive mutation clustering Method to identify cancer-related mutation clusters. Bioinformatics 35(3), 389–397 (2018)

    Article  Google Scholar 

  11. Lee, S.I., et al.: Learning a prior on regulatory potential from eQTL data. PLoS Genet. 5(1), e1000358 (2009)

    Article  Google Scholar 

  12. Wang, Z., et al.: Cancer driver mutation prediction through Bayesian integration of multi-omic data. PLoS ONE 13(5), e0196939 (2018)

    Article  Google Scholar 

  13. Cheng, F., Zhao, J., Zhao, Z.: Advances in computational approaches for prioritizing driver mutations and significantly mutated genes in cancer genomes. Briefings Bioinform. 17(4), 642–656 (2015)

    Article  Google Scholar 

  14. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. Royal Stat. Soc. Ser. B (Methodol.) 58(1), 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  15. Nie, F., Huang, H., Cai, X., Ding, C.H.: Efficient and robust feature selection via joint ℓ2, 1-norms minimization. In: Advances in neural information processing systems, pp. 1813–1821 (2010)

    Google Scholar 

  16. Wright, S.J.: Coordinate descent algorithms. Math. Program. 151(1), 3–34 (2015)

    Article  MathSciNet  Google Scholar 

  17. Logsdon, B.A., Gentles, A.J., Miller, C.P., Blau, C.A., Becker, P.S., Lee, S.I.: Sparse expression bases in cancer reveal tumor drivers. Nucleic Acids Res. 43(3), 1332–1344 (2015)

    Article  Google Scholar 

  18. Sondka, Z., Bamford, S., Cole, C.G., Ward, S.A., Dunham, I., Forbes, S.A.: The COSMIC cancer gene census: describing genetic dysfunction across all human cancers. Nat. Rev. Cancer 18, 696–705 (2018)

    Article  Google Scholar 

  19. Mitkin, N.A., et al.: p53-dependent expression of CXCR1 chemokine receptor in MCF-7 breast cancer cells. Sci. Rep. 5, 9330 (2015)

    Article  Google Scholar 

  20. Cheng, W.C., et al.: DriverDB: an exome sequencing database for cancer driver gene identification. Nucleic Acids Res. 42(D1), D1048–D1054 (2014)

    Article  Google Scholar 

  21. Venn’s diagrams. http://bioinfogp.cnb.csic.es/tools/venny/index.html. Accessed 25 Mar 2019

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (Grant No. 61502159) and Natural Science Foundation of Hunan Province, China (Grant No. 2018JJ2053).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lu, X., Wang, X., Liu, P., Zhu, Z., Ding, L. (2019). A Novel Method to Predict Protein Regions Driving Cancer Through Integration of Multi-omics Data. In: Huang, DS., Jo, KH., Huang, ZK. (eds) Intelligent Computing Theories and Application. ICIC 2019. Lecture Notes in Computer Science(), vol 11644. Springer, Cham. https://doi.org/10.1007/978-3-030-26969-2_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26969-2_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26968-5

  • Online ISBN: 978-3-030-26969-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics