Abstract
In real-world visual content acquisition and distribution systems, a vast majority of visual content undergoes multiple distortions between the source and the end user. However, traditional image quality assessment (IQA) algorithms are usually validated and at times trained on image databases with a single distortion stage. Existing IQA methods for multiply distorted images remain limited in their scope and performance. In this work we design a first-of-its-kind blind IQA model for multiply distorted visual content based on a deep end-to-end convolutional neural network. The network is trained on a newly developed dataset which is composed of millions of multiply distorted images annotated with synthetic quality scores. Our tests on three publicly available subject-rated multiply distorted image databases show that the proposed model outperforms state-of-the-art blind IQA methods in terms of both accuracy and speed.
This work is supported in part by the Natural Sciences and Engineering Research Council of Canada
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Wang, Z., Bovik, A.C.: Mean squared error: love it or leave it? A new look at signal fidelity measures. IEEE Signal Process. Mag. 26(1), 98–117 (2009)
Wang, Z., Bovik, A.C.: Modern image quality assessment. Synth. Lect. Image Video Multimedia Process. 2(1), 1–156 (2006)
Sheikh, H.R., Wang, Z., Cormack, L., Bovik, A.C.: LIVE Image Quality Assessment Database Release 2. http://live.ece.utexas.edu/research/Quality/subjective.htm
Sheikh, H.R., Sabir, M.F., Bovik, A.C.: A statistical evaluation of recent full reference image quality assessment algorithms. IEEE Trans. Image Process. 15(11), 3440–3451 (2006)
Ponomarenko, N., et al.: TID2008-a database for evaluation of full-reference visual quality assessment metrics. Adv. Modern Radioelectron. 10(4), 30–45 (2009)
Ponomarenko, N., et al.: Image database TID2013: peculiarities, results and perspectives. Signal Process Image Commun. 30, 57–77 (2015)
Larson, E.C., Chandler, D.M.: Most apparent distortion: full-reference image quality assessment and the role of strategy. J. Electron. Imag. 19(1), 011 006:1–011 006:21 (2010)
Zarić, A., et al.: VCL@FER image quality assessment database. AUTOMATIKA 53(4), 344–354 (2012)
Liu, X., Pedersen, M., Hardeberg, J.Y.: CID:IQ – a new image quality database. In: Elmoataz, A., Lezoray, O., Nouboud, F., Mammass, D. (eds.) ICISP 2014. LNCS, vol. 8509, pp. 193–202. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07998-1_22
Chandler, D.M.: Seven challenges in image quality assessment: past, present, and future research. ISRN Signal Process. 2013, 1–53 (2013). Article ID 905685
Jayaraman, D., Mittal, A., Moorthy, A.K., Bovik, A.C.: Objective quality assessment of multiply distorted images. In: Conference Record Asilomar Conference Signals, Systems, and Computers (ASILOMAR), Pacific Grove, CA, USA, pp. 1693–1697, November 2012
Gu, K., Zhai, G., Yang, X., Zhang, W.: Hybrid no-reference quality metric for singly and multiply distorted images. IEEE Trans. Broadcast. 60(3), 555–567 (2014)
Sun, W., Zhou, F., Liao, Q.: MDID: a multiply distorted image database for image quality assessment. Pattern Recognit. 61, 153–168 (2017)
Corchs, S., Gasparini, F.: A multidistortion database for image quality. In: Bianco, S., Schettini, R., Trémeau, A., Tominaga, S. (eds.) CCIW 2017. LNCS, vol. 10213, pp. 95–104. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56010-6_8
Virtanen, T., Nuutinen, M., Vaahteranoksa, M., Oittinen, P., Häkkinen, J.: CID2013: a database for evaluating no-reference image quality assessment algorithms. IEEE Trans. Image Process. 24(1), 390–402 (2015)
Ghadiyaram, D., Bovik, A.C.: Massive online crowdsourced study of subjective and objective picture quality. IEEE Trans. Image Process. 25(1), 372–387 (2016)
Lu, Y., Xie, F., Liu, T., Jiang, Z., Tao, D.: No reference quality assessment for multiply-distorted images based on an improved bag-of-words model. IEEE Signal Process. Lett. 22(10), 1811–1815 (2015)
Li, C., Zhang, Y., Wu, X., Fang, W., Mao, L.: Blind multiply distorted image quality assessment using relevant perceptual features. In: Proceedings of IEEE International Conference on Image Processing (ICIP), Quebec City, QC, Canada, pp. 4883–4886, September 2015
Li, C., Zhang, Y., Wu, X., Zheng, Y.: A multi-scale learning local phase and amplitude blind image quality assessment for multiply distorted images. IEEE Access 6, 64 577–64 586 (2018)
Li, Q., Lin, W., Fang, Y.: No-reference quality assessment for multiply-distorted images in gradient domain. IEEE Signal Process. Lett. 23(4), 541–545 (2016)
Hadizadeh, H., Bajić, I.V.: Color Gaussian jet features for no-reference quality assessment of multiply-distorted images. IEEE Signal Process. Lett. 23(12), 1717–1721 (2016)
Zhang, Y., Chandler, D.M.: Opinion-unaware blind quality assessment of multiply and singly distorted images via distortion parameter estimation. IEEE Trans. Image Process. 27(11), 5433–5448 (2018)
Ma, K., Liu, W., Zhang, K., Duanmu, Z., Wang, Z., Zuo, W.: End-to-end blind image quality assessment using deep neural networks. IEEE Trans. Image Process. 27(3), 1202–1213 (2018)
Kim, J., Lee, S.: Fully deep blind image quality predictor. IEEE J. Sel. Topics Signal Process. 11(1), 206–220 (2017)
Talebi, H., Milanfar, P.: NIMA: neural image assessment. IEEE Trans. Image Process. 27(8), 3998–4011 (2018)
Bosse, S., Maniry, D., Müller, K., Wiegand, T., Samek, W.: Deep neural networks for no-reference and full-reference image quality assessment. IEEE Trans. Image Process. 27(1), 206–219 (2018)
Li, J., Zou, L., Yan, J., Deng, D., Qu, T., Xie, G.: No-reference image quality assessment using Prewitt magnitude based on convolutional neural networks. Signal Image Video Process. (SIViP) 10(4), 609–616 (2016)
Zeng, H., Zhang, L., Bovik, A.C.: Blind image quality assessment with a probabilistic quality representation. In: Proceedings of IEEE International Conference on Image Processing (ICIP), Athens, Greece, pp. 609–613, October 2018
Gao, F., Yu, J., Zhu, S., Huang, Q., Tian, Q.: Blind image quality prediction by exploiting multi-level deep representations. Pattern Recognit. 81, 432–442 (2018)
Bianco, S., Celona, L., Napoletano, P., Schettini, R.: On the use of deep learning for blind image quality assessment. Signal Image Video Process. (SIViP) 12(2), 355–362 (2018)
Kang, L., Ye, P., Li, Y., Doermann, D.: Convolutional neural networks for no-reference image quality assessment. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, OH, USA, pp. 1733–1740, June 2014
Kang, L., Ye, P., Li, Y., Doermann, D.: Simultaneous estimation of image quality and distortion via multi-task convolutional neural networks. In: Proceedings of IEEE International Conference on Image Processing (ICIP), Quebec City, QC, Canada, pp. 2791–2795, September 2015
Fu, J., Wang, H., Zuo, L.: Blind image quality assessment for multiply distorted images via convolutional neural networks. In: Proceedings of IEEE International Conference on Acoustics, Speech, Signal Processing (ICASSP), Shanghai, China, pp. 1075–1079, March 2016
Li, J., Yan, J., Deng, D., Shi, W., Deng, S.: No-reference image quality assessment based on hybrid model. Signal Image Video Process. (SIViP) 11(6), 985–992 (2017)
Li, Q., Wang, Z.: Reduced-reference image quality assessment using divisive normalization-based image representation. IEEE J. Sel. Topics Signal Process. 3(2), 202–211 (2009)
Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: Proceedings of International Conference on Machine Learning (ICML), Haifa, Israel, pp. 807–814, June 2010
He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. In: IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, pp. 1026–1034, December 2015
Kingma, D.P., Ba, J.L.: Adam: a method for stochastic optimization. In: Proceedings of International Conference on Learning Representations (ICLR), San Diego, CA, USA, May 2015
Moorthy, A.K., Bovik, A.C.: A two-step framework for constructing blind image quality indices. IEEE Signal Process. Lett. 17(5), 513–516 (2010)
Mittal, A., Moorthy, A.K., Bovik, A.C.: No-reference image quality assessment in the spatial domain. IEEE Trans. Image Process. 21(12), 4695–4708 (2012)
Ye, P., Kumar, J., Kang, L., Doermann, D.: Unsupervised feature learning framework for no-reference image quality assessment. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Providence, RI, USA, pp. 1098–1105, June 2012
Ma, K., Liu, W., Liu, T., Wang, Z., Tao, D.: dipIQ: blind image quality assessment by learning-to-rank discriminable image pairs. IEEE Trans. Image Process. 26(8), 3951–3964 (2017)
Xue, W., Mou, X., Zhang, L., Bovik, A.C., Feng, X.: Blind image quality assessment using joint statistics of gradient magnitude and laplacian features. IEEE Trans. Image Process. 23(11), 4850–4862 (2014)
Xu, J., Ye, P., Li, Q., Du, H., Liu, Y., Doermann, D.: Blind image quality assessment based on high order statistics aggregation. IEEE Trans. Image Process. 25(9), 4444–4457 (2016)
Zhang, L., Zhang, L., Bovik, A.C.: A feature-enriched completely blind image quality evaluator. IEEE Trans. Image Process. 24(8), 2579–2591 (2015)
Wu, Q., Wang, Z., Li, H.: A highly efficient method for blind image quality assessment. In: Proceedings of IEEE International Conference on Image Processing (ICIP), Quebec City, QC, Canada, pp. 339–343, September 2015
Mittal, A., Soundararajan, R., Bovik, A.C.: Making a “Completely Blind” image quality analyzer. IEEE Signal Process. Lett. 20(3), 209–212 (2013)
Li, Q., Lin, W., Xu, J., Fang, Y.: Blind image quality assessment using statistical structural and luminance features. IEEE Trans. Multimedia 18(12), 2457–2469 (2016)
Xue, W., Zhang, L., Mou, X.: Learning without human scores for blind image quality assessment. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Portland, OR, USA, pp. 995–1002, June 2013
Wang, Z., Li, Q.: Information content weighting for perceptual image quality assessment. IEEE Trans. Image Process. 20(5), 1185–1198 (2011)
Video Quality Experts Group and others, Final report from the Video Quality Experts Group on the validation of objective models of video quality assessment, Phase II (2003)
Sheskin, D.J.: Handbook of Parametric and Nonparametric Statistical Procedures. Chapman & Hall/CRC, Boca Raton (2011)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Wang, Z., Athar, S., Wang, Z. (2019). Blind Quality Assessment of Multiply Distorted Images Using Deep Neural Networks. In: Karray, F., Campilho, A., Yu, A. (eds) Image Analysis and Recognition. ICIAR 2019. Lecture Notes in Computer Science(), vol 11662. Springer, Cham. https://doi.org/10.1007/978-3-030-27202-9_8
Download citation
DOI: https://doi.org/10.1007/978-3-030-27202-9_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-27201-2
Online ISBN: 978-3-030-27202-9
eBook Packages: Computer ScienceComputer Science (R0)