Abstract
Age Estimation plays a significant role in many real-world applications. Age estimation is a process of determining the exact age or age group of a person depending on his biometric features. Recent research demonstrates that the deeply learned features for age estimation from large-scale data result in significant improvement of the age estimation performance for facial images. This paper propose a Convolutional Neural Network (CNN) - approach using Bayesian Optimization for facial age estimation. Bayesian Optimization is applied to minimize the classification error on the validation set for CNN model. Extensive experiments are done for evaluating Deep Learning using Bayesian Optimization (DLOB) on three datasets: MORPH, FG-NET and FERET. The results show that using Bayesian Optimization for CNN outperforms the state of the arts on FG-NET and FERET datasets with a Mean Absolute Error (MAE) of 2.88 and 1.3, and achieves comparable results compared to the most of the state-of-the-art methods on MORPH dataset with a 3.01 MAE.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Lin, C.-T., Li, D.-L., Lai, J.-H., Han, M.-F., Chang, J.-Y.: Automatic age estimation system for face images. Int. J. Adv. Robot. Syst. 9(5), 216 (2012)
Grd, P.: Introduction to human age estimation using face images. Research Papers Faculty of Materials Science and Technology Slovak University of Technology, vol. 21, no. Special Issue, pp. 24–30 (2013)
Moćkus, J., Tiesis, V., Źilinskas, A.: The application of Bayesian methods for seeking the extremum, vol. 2 (1978)
Jones, D.R.: A taxonomy of global optimization methods based on response surfaces. J. Glob. Optim. 21(4), 345–383 (2001)
Wan, J., et al.: Deep learning for content-based image retrieval: a comprehensive study. In: Proceedings of the 22nd ACM international conference on Multimedia, pp. 157–166. ACM (2014)
LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)
Zeiler, M.D.: Hierarchical convolutional deep learning in computer vision. Ph.D. thesis, New York University (2013)
Sun, Y., Wang, X., Tang, X.: Deep learning face representation from predicting 10,000 classes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1891–1898 (2014)
Sun, Y., Chen, Y., Wang, X., Tang, X.: Deep learning face representation by joint identification-verification. In: Advances in Neural Information Processing Systems, pp. 1988–1996 (2014)
Sun, Y., Wang, X., Tang, X.: Deep convolutional network cascade for facial point detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3476–3483 (2013)
Zhang, Z., Luo, P., Loy, C.C., Tang, X.: Facial landmark detection by deep multi-task learning. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8694, pp. 94–108. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10599-4_7
Wang, X., Guo, R., Kambhamettu, C.: Deeply-learned feature for age estimation. In: 2015 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 534–541. IEEE (2015)
Dong, Y., Liu, Y., Lian, S.: Automatic age estimation based on deep learning algorithm. Neurocomputing 187, 4–10 (2016)
Gurpinar, F., Kaya, H., Dibeklioglu, H., Salah, A.: Kernel elm and CNN based facial age estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 80–86 (2016)
Rothe, R., Timofte, R., Van Gool, L.: Deep expectation of real and apparent age from a single image without facial landmarks. Int. J. Comput. Vis. 126(2–4), 144–157 (2018)
Qiu, J., et al.: Convolutional neural network based age estimation from facial image and depth prediction from single image (2016)
Brochu, E., Cora, V.M., De Freitas, N.: A tutorial on bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning. arXiv preprint arXiv:1012.2599 (2010)
Shahriari, B., Swersky, K., Wang, Z., Adams, R.P., De Freitas, N.: Taking the human out of the loop: a review of Bayesian optimization. Proc. IEEE 104(1), 148–175 (2016)
Snoek, J., Larochelle, H., Adams, R.P.: Practical Bayesian optimization of machine learning algorithms. In: Advances in Neural Information Processing Systems, pp. 2951–2959 (2012)
Williams, C.K., Rasmussen, C.E.: Gaussian processes for machine learning, vol. 2. The MIT Press, Cambridge (2006). no. 3, p. 4
Swersky, K., Snoek, J., Adams, R.P.: Multi-task Bayesian optimization. In: Advances in Neural Information Processing Systems, pp. 2004–2012 (2013)
Zhou, E., Fan, H., Cao, Z., Jiang, Y., Yin, Q.: Extensive facial landmark localization with coarse-to-fine convolutional network cascade. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 386–391 (2013)
Ricanek, K., Tesafaye, T.: MORPH: a longitudinal image database of normal adult age-progression. In: 7th International Conference on Automatic Face and Gesture Recognition, FGR 2006, pp. 341–345. IEEE (2006)
Panis, G., Lanitis, A., Tsapatsoulis, N., Cootes, T.F.: Overview of research on facial ageing using the FG-NET ageing database. IET Biometrics 5(2), 37–46 (2016)
Phillips, P.J., Moon, H., Rizvi, S.A., Rauss, P.J.: The feret evaluation methodology for face-recognition algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 22(10), 1090–1104 (2000)
Chen, K., Gong, S., Xiang, T., Change Loy, C.: Cumulative attribute space for age and crowd density estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2467–2474 (2013)
Niu, Z., Zhou, M., Wang, L., Gao, X., Hua, G.: Ordinal regression with multiple output CNN for age estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4920–4928 (2016)
Shen, W., Guo, Y., Wang, Y., Zhao, K., Wang, B., Yuille, A.: Deep regression forests for age estimation. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2304–2313. IEEE (2018)
Hu, Z., Wen, Y., Wang, J., Wang, M., Hong, R., Yan, S.: Facial age estimation with age difference. IEEE Trans. Image Process. 26(7), 3087–3097 (2017)
Chen, S., Zhang, C., Dong, M.: Deep age estimation: from classification to ranking. IEEE Trans. Multimed. 20(8), 2209–2222 (2018)
Liu, H., Lu, J., Feng, J., Zhou, J.: Group-aware deep feature learning for facial age estimation. Pattern Recogn. 66, 82–94 (2017)
Liu, H., Lu, J., Feng, J., Zhou, J.: Ordinal deep learning for facial age estimation. IEEE Trans. Circ. Syst. Video Technol. 29, 486–501 (2017)
Ng, C.-C., Yap, M.H., Costen, N., Li, B.: Will wrinkle estimate the face age? In: 2015 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 2418–2423. IEEE (2015)
Ng, C.-C., Yap, M.H., Cheng, Y.-T., Hsu, G.-S.: Hybrid ageing patterns for face age estimation. Image and Vision Comput. 69, 92–102 (2018)
Ng, C.-C., Cheng, Y.-T., Hsu, G.-S., Yap, M.H.: Multi-layer age regression for face age estimation. In: 2017 Fifteenth IAPR International Conference on Machine Vision Applications (MVA), pp. 294–297. IEEE (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Ahmed, M., Viriri, S. (2019). Deep Learning Using Bayesian Optimization for Facial Age Estimation. In: Karray, F., Campilho, A., Yu, A. (eds) Image Analysis and Recognition. ICIAR 2019. Lecture Notes in Computer Science(), vol 11663. Springer, Cham. https://doi.org/10.1007/978-3-030-27272-2_21
Download citation
DOI: https://doi.org/10.1007/978-3-030-27272-2_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-27271-5
Online ISBN: 978-3-030-27272-2
eBook Packages: Computer ScienceComputer Science (R0)