Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Deep Learning Using Bayesian Optimization for Facial Age Estimation

  • Conference paper
  • First Online:
Image Analysis and Recognition (ICIAR 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11663))

Included in the following conference series:

Abstract

Age Estimation plays a significant role in many real-world applications. Age estimation is a process of determining the exact age or age group of a person depending on his biometric features. Recent research demonstrates that the deeply learned features for age estimation from large-scale data result in significant improvement of the age estimation performance for facial images. This paper propose a Convolutional Neural Network (CNN) - approach using Bayesian Optimization for facial age estimation. Bayesian Optimization is applied to minimize the classification error on the validation set for CNN model. Extensive experiments are done for evaluating Deep Learning using Bayesian Optimization (DLOB) on three datasets: MORPH, FG-NET and FERET. The results show that using Bayesian Optimization for CNN outperforms the state of the arts on FG-NET and FERET datasets with a Mean Absolute Error (MAE) of 2.88 and 1.3, and achieves comparable results compared to the most of the state-of-the-art methods on MORPH dataset with a 3.01 MAE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lin, C.-T., Li, D.-L., Lai, J.-H., Han, M.-F., Chang, J.-Y.: Automatic age estimation system for face images. Int. J. Adv. Robot. Syst. 9(5), 216 (2012)

    Article  Google Scholar 

  2. Grd, P.: Introduction to human age estimation using face images. Research Papers Faculty of Materials Science and Technology Slovak University of Technology, vol. 21, no. Special Issue, pp. 24–30 (2013)

    Article  Google Scholar 

  3. Moćkus, J., Tiesis, V., Źilinskas, A.: The application of Bayesian methods for seeking the extremum, vol. 2 (1978)

    Google Scholar 

  4. Jones, D.R.: A taxonomy of global optimization methods based on response surfaces. J. Glob. Optim. 21(4), 345–383 (2001)

    Article  MathSciNet  Google Scholar 

  5. Wan, J., et al.: Deep learning for content-based image retrieval: a comprehensive study. In: Proceedings of the 22nd ACM international conference on Multimedia, pp. 157–166. ACM (2014)

    Google Scholar 

  6. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  7. Zeiler, M.D.: Hierarchical convolutional deep learning in computer vision. Ph.D. thesis, New York University (2013)

    Google Scholar 

  8. Sun, Y., Wang, X., Tang, X.: Deep learning face representation from predicting 10,000 classes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1891–1898 (2014)

    Google Scholar 

  9. Sun, Y., Chen, Y., Wang, X., Tang, X.: Deep learning face representation by joint identification-verification. In: Advances in Neural Information Processing Systems, pp. 1988–1996 (2014)

    Google Scholar 

  10. Sun, Y., Wang, X., Tang, X.: Deep convolutional network cascade for facial point detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3476–3483 (2013)

    Google Scholar 

  11. Zhang, Z., Luo, P., Loy, C.C., Tang, X.: Facial landmark detection by deep multi-task learning. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8694, pp. 94–108. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10599-4_7

    Chapter  Google Scholar 

  12. Wang, X., Guo, R., Kambhamettu, C.: Deeply-learned feature for age estimation. In: 2015 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 534–541. IEEE (2015)

    Google Scholar 

  13. Dong, Y., Liu, Y., Lian, S.: Automatic age estimation based on deep learning algorithm. Neurocomputing 187, 4–10 (2016)

    Article  Google Scholar 

  14. Gurpinar, F., Kaya, H., Dibeklioglu, H., Salah, A.: Kernel elm and CNN based facial age estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 80–86 (2016)

    Google Scholar 

  15. Rothe, R., Timofte, R., Van Gool, L.: Deep expectation of real and apparent age from a single image without facial landmarks. Int. J. Comput. Vis. 126(2–4), 144–157 (2018)

    Article  MathSciNet  Google Scholar 

  16. Qiu, J., et al.: Convolutional neural network based age estimation from facial image and depth prediction from single image (2016)

    Google Scholar 

  17. Brochu, E., Cora, V.M., De Freitas, N.: A tutorial on bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning. arXiv preprint arXiv:1012.2599 (2010)

  18. Shahriari, B., Swersky, K., Wang, Z., Adams, R.P., De Freitas, N.: Taking the human out of the loop: a review of Bayesian optimization. Proc. IEEE 104(1), 148–175 (2016)

    Article  Google Scholar 

  19. Snoek, J., Larochelle, H., Adams, R.P.: Practical Bayesian optimization of machine learning algorithms. In: Advances in Neural Information Processing Systems, pp. 2951–2959 (2012)

    Google Scholar 

  20. Williams, C.K., Rasmussen, C.E.: Gaussian processes for machine learning, vol. 2. The MIT Press, Cambridge (2006). no. 3, p. 4

    MATH  Google Scholar 

  21. Swersky, K., Snoek, J., Adams, R.P.: Multi-task Bayesian optimization. In: Advances in Neural Information Processing Systems, pp. 2004–2012 (2013)

    Google Scholar 

  22. Zhou, E., Fan, H., Cao, Z., Jiang, Y., Yin, Q.: Extensive facial landmark localization with coarse-to-fine convolutional network cascade. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 386–391 (2013)

    Google Scholar 

  23. Ricanek, K., Tesafaye, T.: MORPH: a longitudinal image database of normal adult age-progression. In: 7th International Conference on Automatic Face and Gesture Recognition, FGR 2006, pp. 341–345. IEEE (2006)

    Google Scholar 

  24. Panis, G., Lanitis, A., Tsapatsoulis, N., Cootes, T.F.: Overview of research on facial ageing using the FG-NET ageing database. IET Biometrics 5(2), 37–46 (2016)

    Article  Google Scholar 

  25. Phillips, P.J., Moon, H., Rizvi, S.A., Rauss, P.J.: The feret evaluation methodology for face-recognition algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 22(10), 1090–1104 (2000)

    Article  Google Scholar 

  26. Chen, K., Gong, S., Xiang, T., Change Loy, C.: Cumulative attribute space for age and crowd density estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2467–2474 (2013)

    Google Scholar 

  27. Niu, Z., Zhou, M., Wang, L., Gao, X., Hua, G.: Ordinal regression with multiple output CNN for age estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4920–4928 (2016)

    Google Scholar 

  28. Shen, W., Guo, Y., Wang, Y., Zhao, K., Wang, B., Yuille, A.: Deep regression forests for age estimation. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2304–2313. IEEE (2018)

    Google Scholar 

  29. Hu, Z., Wen, Y., Wang, J., Wang, M., Hong, R., Yan, S.: Facial age estimation with age difference. IEEE Trans. Image Process. 26(7), 3087–3097 (2017)

    Article  MathSciNet  Google Scholar 

  30. Chen, S., Zhang, C., Dong, M.: Deep age estimation: from classification to ranking. IEEE Trans. Multimed. 20(8), 2209–2222 (2018)

    Article  Google Scholar 

  31. Liu, H., Lu, J., Feng, J., Zhou, J.: Group-aware deep feature learning for facial age estimation. Pattern Recogn. 66, 82–94 (2017)

    Article  Google Scholar 

  32. Liu, H., Lu, J., Feng, J., Zhou, J.: Ordinal deep learning for facial age estimation. IEEE Trans. Circ. Syst. Video Technol. 29, 486–501 (2017)

    Article  Google Scholar 

  33. Ng, C.-C., Yap, M.H., Costen, N., Li, B.: Will wrinkle estimate the face age? In: 2015 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 2418–2423. IEEE (2015)

    Google Scholar 

  34. Ng, C.-C., Yap, M.H., Cheng, Y.-T., Hsu, G.-S.: Hybrid ageing patterns for face age estimation. Image and Vision Comput. 69, 92–102 (2018)

    Article  Google Scholar 

  35. Ng, C.-C., Cheng, Y.-T., Hsu, G.-S., Yap, M.H.: Multi-layer age regression for face age estimation. In: 2017 Fifteenth IAPR International Conference on Machine Vision Applications (MVA), pp. 294–297. IEEE (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serestina Viriri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ahmed, M., Viriri, S. (2019). Deep Learning Using Bayesian Optimization for Facial Age Estimation. In: Karray, F., Campilho, A., Yu, A. (eds) Image Analysis and Recognition. ICIAR 2019. Lecture Notes in Computer Science(), vol 11663. Springer, Cham. https://doi.org/10.1007/978-3-030-27272-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-27272-2_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-27271-5

  • Online ISBN: 978-3-030-27272-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics