Abstract
High-Performance Computing (HPC) is rapidly moving towards the adoption of nodes characterized by an heterogeneous set of processing resources. This has already shown benefits in terms of both performance and energy efficiency. On the other side, heterogeneous systems are challenging from the application development and the resource management perspective. In this work, we discuss some outcomes of the MANGO project, showing the results of the execution of real applications on a emulated deeply heterogeneous systems for HPC. Moreover, we assessed the achievements of a proposed resource allocation policy, aiming at identifying a priori the best resource allocation options for a starting application.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
References
Ababei, C., Ghorbani Moghaddam, M.: A survey of prediction and classification techniques in multicore processor systems. IEEE Trans. Parallel Distrib. Syst. PP(99), 1 (2018). https://doi.org/10.1109/TPDS.2018.2878699
Agosta, G., Fornaciari, W., Massari, G., Pupykina, A., Reghenzani, F., Zanella, M.: Managing heterogeneous resources in HPC systems. In: Proceedings of PARMA-DITAM 2018, pp. 7–12. ACM (2018). https://doi.org/10.1145/3183767.3183769
Bellasi, P., Massari, G., Fornaciari, W.: Effective runtime resource management using Linux control groups with the BarbequeRTRM framework. ACM Trans. Embed. Comput. Syst. 14(2), 39:1–39:17 (2015). https://doi.org/10.1145/2658990
Cherubin, S., Agosta, G.: libVersioningCompiler: an easy-to-use library for dynamic generation and invocation of multiple code versions. SoftwareX 7, 95–100 (2018). https://doi.org/10.1016/j.softx.2018.03.006
Dauwe, D., Pasricha, S., Maciejewski, A.A., Siegel, H.J.: Resilience-aware resource management for exascale computing systems. IEEE Trans. Sustain. Comput. 3(4), 332–345 (2018). https://doi.org/10.1109/TSUSC.2018.2797890
Donyanavard, B., Mück, T., Sarma, S., Dutt, N.: SPARTA: runtime task allocation for energy efficient heterogeneous manycores. In: 2016 International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS), pp. 1–10, October 2016
Flich, J., et al.: Enabling HPC for QoS-sensitive applications: the MANGO approach. In: 2016 Design, Automation Test in Europe Conference Exhibition (DATE), pp. 702–707, March 2016
Flich, J., Agosta, G., et al.: MANGO: exploring manycore architectures for next-generation HPC systems. In: 2017 Euromicro Conference on Digital System Design (DSD), pp. 478–485, August 2017. https://doi.org/10.1109/DSD.2017.51
Flich, J., Alessandro, C., Kovač, M., Tornero, R., Martínez, J.M., Picornell, T.: Deeply heterogeneous many-accelerator infrastructure for HPC architecture exploration. In: Parallel Computing Conference (ParCo) (2017)
Flich, J., et al.: Exploring manycore architectures for next-generation HPC systems through the MANGO approach. Microprocess. Microsyst. 61, 154–170 (2018). https://doi.org/10.1016/j.micpro.2018.05.011
Fornaciari, W., et al.: Reliable power and time-constraints-aware predictive management of heterogeneous exascale systems. In: Proceedings of the 18th International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation, SAMOS 2018, pp. 187–194. ACM, New York (2018). https://doi.org/10.1145/3229631.3239368
Gallager, R.: Low-density parity-check codes. IRE Trans. Inf. Theory 8(1), 21–28 (1962)
Georgiou, Y., Jeannot, E., Mercier, G., Villiermet, A.: Topology-aware resource management for HPC applications. In: Proceedings of the 18th International Conference on Distributed Computing and Networking, ICDCN 2017, pp. 17:1–17:10. ACM, New York (2017). https://doi.org/10.1145/3007748.3007768
Georgopoulos, K., Mavroidis, I., Lavagno, L., Papaefstathiou, I., Bakanov, K.: Energy-efficient heterogeneous computing at exaSCALE—ECOSCALE. In: Kachris, C., Falsafi, B., Soudris, D. (eds.) Hardware Accelerators in Data Centers, pp. 199–213. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-92792-3_11
Herbordt, M.C., et al.: Achieving high performance with FPGA-based computing. Computer 40(3), 50–57 (2007)
Hindman, B., et al.: Mesos: a platform for fine-grained resource sharing in the data center. In: Proceedings of the 8th USENIX Conference on Networked Systems Design and Implementation, NSDI 2011, pp. 295–308. USENIX Association, Berkeley (2011). http://dl.acm.org/citation.cfm?id=1972457.1972488
Li, R., Yang, Q., Li, Y., Gu, X., Xiao, W., Li, K.: HeteroYARN: a heterogeneous FPGA-accelerated architecture based on YARN. IEEE Trans. Parallel Distrib. Syst. PP, 1 (2019). https://doi.org/10.1109/TPDS.2019.2905201
Libutti, S., Massari, G., Fornaciari, W.: Co-scheduling tasks on multi-core heterogeneous systems: an energy-aware perspective. IET Comput. Digit. Tech. 10(2), 77–84 (2016). https://doi.org/10.1049/iet-cdt.2015.0053
MacKay, D.J., Neal, R.M.: Near Shannon limit performance of low density parity check codes. Electron. Lett. 32(18), 1645 (1996)
Massari, G., et al.: Combining application adaptivity and system-wide resource management on multi-core platforms. In: 2014 International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS XIV), pp. 26–33, July 2014. https://doi.org/10.1109/SAMOS.2014.6893191
Netti, A., Galleguillos, C., Kiziltan, Z., Sîrbu, A., Babaoglu, O.: Heterogeneity-aware resource allocation in HPC systems. In: Yokota, R., Weiland, M., Keyes, D., Trinitis, C. (eds.) ISC High Performance 2018. LNCS, vol. 10876, pp. 3–21. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-92040-5_1
Patki, T., et al.: Practical resource management in power-constrained, high performance computing. In: Proceedings of the 24th International Symposium on High-Performance Parallel and Distributed Computing, HPDC 2015, pp. 121–132. ACM, New York (2015). https://doi.org/10.1145/2749246.2749262
Pupykina, A., Agosta, G.: Optimizing memory management in deeply heterogeneous HPC accelerators. In: 2017 46th International Conference on Parallel Processing Workshops (ICPPW), pp. 291–300, August 2017. https://doi.org/10.1109/ICPPW.2017.49
Silvano, C., Agosta, G., et al.: The ANTAREX tool flow for monitoring and autotuning energy efficient HPC systems. In: 2017 International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS), pp. 308–316, July 2017. https://doi.org/10.1109/SAMOS.2017.8344645
Silvano, C., Fornaciari, W., Crespi Reghizzi, S., Agosta, G., et al.: 2PARMA: parallel paradigms and run-time management techniques for many-core architectures. In: 2010 IEEE Computer Society Annual Symposium on VLSI, pp. 494–499, July 2010. https://doi.org/10.1109/ISVLSI.2010.93
Silvano, C., Fornaciari, W., Crespi Reghizzi, S., Agosta, G., et al.: Parallel paradigms and run-time management techniques for many-core architectures: the 2PARMA approach. In: 2011 9th IEEE International Conference on Industrial Informatics, pp. 835–840, July 2011. https://doi.org/10.1109/INDIN.2011.6035001
Vavilapalli, V.K., et al.: Apache Hadoop YARN: yet another resource negotiator. In: Proceedings of the 4th Annual Symposium on Cloud Computing, SOCC 2013, pp. 5:1–5:16. ACM, New York (2013). https://doi.org/10.1145/2523616.2523633
Wu, Y., Nikolopoulos, D.S., Woods, R.: Runtime support for adaptive power capping on heterogeneous SoCs. In: 2016 International Conference on Embedded Computer Systems: Architectures, Modeling and Simulation (SAMOS), pp. 71–78, July 2016. https://doi.org/10.1109/SAMOS.2016.7818333
Ziegler, W., D’ippolito, R., D’Auria, M., Berends, J., Nelissen, M., Diaz, R.: Implementing a “one-stop-shop” providing SMEs with integrated HPC simulation resources using Fortissimo resources. In: eChallenges e-2014 Conference, pp. 1–11. IEEE (2014)
Zoni, D., Cremona, L., Fornaciari, W.: All-digital energy-constrained controller for general-purpose accelerators and CPUs. IEEE Embed. Syst. Lett. PP(99), 1 (2019). https://doi.org/10.1109/LES.2019.2914136
Zoni, D., Flich, J., Fornaciari, W.: CUTBUF: buffer management and router design for traffic mixing in VNET-based NoCs. IEEE Trans. Parallel Distrib. Syst. 27(6), 1603–1616 (2016). https://doi.org/10.1109/TPDS.2015.2468716
Zoni, D., Canidio, A., Fornaciari, W., Englezakis, P., Nicopoulos, C., Sazeides, Y.: BlackOut: enabling fine-grained power gating of buffers in Network-on-Chip routers. J. Parallel Distrib. Comput. 104, 130–145 (2017). https://doi.org/10.1016/j.jpdc.2017.01.016
Zoni, D., Cremona, L., Cilardo, A., Gagliardi, M., Fornaciari, W.: Powertap: all-digital power meter modeling for run-time power monitoring. Microprocess. Microsyst. Embed. Hardw. Des. 63, 128–139 (2018). https://doi.org/10.1016/j.micpro.2018.07.007
Zoni, D., Fornaciari, W.: Modeling DVFS and power-gating actuators for cycle-accurate NoC-based simulators. J. Emerg. Technol. Comput. Syst. 12(3), 27:1–27:24 (2015). https://doi.org/10.1145/2751561
Acknowledgments
This research was partially funded by the H2020 EU projects “MANGO” (grant no. 671668) and “RECIPE” (grant no. 801137 [11]).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Massari, G., Pupykina, A., Agosta, G., Fornaciari, W. (2019). Predictive Resource Management for Next-Generation High-Performance Computing Heterogeneous Platforms. In: Pnevmatikatos, D., Pelcat, M., Jung, M. (eds) Embedded Computer Systems: Architectures, Modeling, and Simulation. SAMOS 2019. Lecture Notes in Computer Science(), vol 11733. Springer, Cham. https://doi.org/10.1007/978-3-030-27562-4_34
Download citation
DOI: https://doi.org/10.1007/978-3-030-27562-4_34
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-27561-7
Online ISBN: 978-3-030-27562-4
eBook Packages: Computer ScienceComputer Science (R0)