Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Predictive Resource Management for Next-Generation High-Performance Computing Heterogeneous Platforms

  • Conference paper
  • First Online:
Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11733))

Included in the following conference series:

Abstract

High-Performance Computing (HPC) is rapidly moving towards the adoption of nodes characterized by an heterogeneous set of processing resources. This has already shown benefits in terms of both performance and energy efficiency. On the other side, heterogeneous systems are challenging from the application development and the resource management perspective. In this work, we discuss some outcomes of the MANGO project, showing the results of the execution of real applications on a emulated deeply heterogeneous systems for HPC. Moreover, we assessed the achievements of a proposed resource allocation policy, aiming at identifying a priori the best resource allocation options for a starting application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    www.top500.org.

  2. 2.

    www.top500.org.

  3. 3.

    www.green500.org.

References

  1. Ababei, C., Ghorbani Moghaddam, M.: A survey of prediction and classification techniques in multicore processor systems. IEEE Trans. Parallel Distrib. Syst. PP(99), 1 (2018). https://doi.org/10.1109/TPDS.2018.2878699

    Article  Google Scholar 

  2. Agosta, G., Fornaciari, W., Massari, G., Pupykina, A., Reghenzani, F., Zanella, M.: Managing heterogeneous resources in HPC systems. In: Proceedings of PARMA-DITAM 2018, pp. 7–12. ACM (2018). https://doi.org/10.1145/3183767.3183769

  3. Bellasi, P., Massari, G., Fornaciari, W.: Effective runtime resource management using Linux control groups with the BarbequeRTRM framework. ACM Trans. Embed. Comput. Syst. 14(2), 39:1–39:17 (2015). https://doi.org/10.1145/2658990

    Article  Google Scholar 

  4. Cherubin, S., Agosta, G.: libVersioningCompiler: an easy-to-use library for dynamic generation and invocation of multiple code versions. SoftwareX 7, 95–100 (2018). https://doi.org/10.1016/j.softx.2018.03.006

    Article  Google Scholar 

  5. Dauwe, D., Pasricha, S., Maciejewski, A.A., Siegel, H.J.: Resilience-aware resource management for exascale computing systems. IEEE Trans. Sustain. Comput. 3(4), 332–345 (2018). https://doi.org/10.1109/TSUSC.2018.2797890

    Article  Google Scholar 

  6. Donyanavard, B., Mück, T., Sarma, S., Dutt, N.: SPARTA: runtime task allocation for energy efficient heterogeneous manycores. In: 2016 International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS), pp. 1–10, October 2016

    Google Scholar 

  7. Flich, J., et al.: Enabling HPC for QoS-sensitive applications: the MANGO approach. In: 2016 Design, Automation Test in Europe Conference Exhibition (DATE), pp. 702–707, March 2016

    Google Scholar 

  8. Flich, J., Agosta, G., et al.: MANGO: exploring manycore architectures for next-generation HPC systems. In: 2017 Euromicro Conference on Digital System Design (DSD), pp. 478–485, August 2017. https://doi.org/10.1109/DSD.2017.51

  9. Flich, J., Alessandro, C., Kovač, M., Tornero, R., Martínez, J.M., Picornell, T.: Deeply heterogeneous many-accelerator infrastructure for HPC architecture exploration. In: Parallel Computing Conference (ParCo) (2017)

    Google Scholar 

  10. Flich, J., et al.: Exploring manycore architectures for next-generation HPC systems through the MANGO approach. Microprocess. Microsyst. 61, 154–170 (2018). https://doi.org/10.1016/j.micpro.2018.05.011

    Article  Google Scholar 

  11. Fornaciari, W., et al.: Reliable power and time-constraints-aware predictive management of heterogeneous exascale systems. In: Proceedings of the 18th International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation, SAMOS 2018, pp. 187–194. ACM, New York (2018). https://doi.org/10.1145/3229631.3239368

  12. Gallager, R.: Low-density parity-check codes. IRE Trans. Inf. Theory 8(1), 21–28 (1962)

    Article  MathSciNet  Google Scholar 

  13. Georgiou, Y., Jeannot, E., Mercier, G., Villiermet, A.: Topology-aware resource management for HPC applications. In: Proceedings of the 18th International Conference on Distributed Computing and Networking, ICDCN 2017, pp. 17:1–17:10. ACM, New York (2017). https://doi.org/10.1145/3007748.3007768

  14. Georgopoulos, K., Mavroidis, I., Lavagno, L., Papaefstathiou, I., Bakanov, K.: Energy-efficient heterogeneous computing at exaSCALE—ECOSCALE. In: Kachris, C., Falsafi, B., Soudris, D. (eds.) Hardware Accelerators in Data Centers, pp. 199–213. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-92792-3_11

    Chapter  Google Scholar 

  15. Herbordt, M.C., et al.: Achieving high performance with FPGA-based computing. Computer 40(3), 50–57 (2007)

    Article  Google Scholar 

  16. Hindman, B., et al.: Mesos: a platform for fine-grained resource sharing in the data center. In: Proceedings of the 8th USENIX Conference on Networked Systems Design and Implementation, NSDI 2011, pp. 295–308. USENIX Association, Berkeley (2011). http://dl.acm.org/citation.cfm?id=1972457.1972488

  17. Li, R., Yang, Q., Li, Y., Gu, X., Xiao, W., Li, K.: HeteroYARN: a heterogeneous FPGA-accelerated architecture based on YARN. IEEE Trans. Parallel Distrib. Syst. PP, 1 (2019). https://doi.org/10.1109/TPDS.2019.2905201

  18. Libutti, S., Massari, G., Fornaciari, W.: Co-scheduling tasks on multi-core heterogeneous systems: an energy-aware perspective. IET Comput. Digit. Tech. 10(2), 77–84 (2016). https://doi.org/10.1049/iet-cdt.2015.0053

    Article  Google Scholar 

  19. MacKay, D.J., Neal, R.M.: Near Shannon limit performance of low density parity check codes. Electron. Lett. 32(18), 1645 (1996)

    Article  Google Scholar 

  20. Massari, G., et al.: Combining application adaptivity and system-wide resource management on multi-core platforms. In: 2014 International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS XIV), pp. 26–33, July 2014. https://doi.org/10.1109/SAMOS.2014.6893191

  21. Netti, A., Galleguillos, C., Kiziltan, Z., Sîrbu, A., Babaoglu, O.: Heterogeneity-aware resource allocation in HPC systems. In: Yokota, R., Weiland, M., Keyes, D., Trinitis, C. (eds.) ISC High Performance 2018. LNCS, vol. 10876, pp. 3–21. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-92040-5_1

    Chapter  Google Scholar 

  22. Patki, T., et al.: Practical resource management in power-constrained, high performance computing. In: Proceedings of the 24th International Symposium on High-Performance Parallel and Distributed Computing, HPDC 2015, pp. 121–132. ACM, New York (2015). https://doi.org/10.1145/2749246.2749262

  23. Pupykina, A., Agosta, G.: Optimizing memory management in deeply heterogeneous HPC accelerators. In: 2017 46th International Conference on Parallel Processing Workshops (ICPPW), pp. 291–300, August 2017. https://doi.org/10.1109/ICPPW.2017.49

  24. Silvano, C., Agosta, G., et al.: The ANTAREX tool flow for monitoring and autotuning energy efficient HPC systems. In: 2017 International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS), pp. 308–316, July 2017. https://doi.org/10.1109/SAMOS.2017.8344645

  25. Silvano, C., Fornaciari, W., Crespi Reghizzi, S., Agosta, G., et al.: 2PARMA: parallel paradigms and run-time management techniques for many-core architectures. In: 2010 IEEE Computer Society Annual Symposium on VLSI, pp. 494–499, July 2010. https://doi.org/10.1109/ISVLSI.2010.93

  26. Silvano, C., Fornaciari, W., Crespi Reghizzi, S., Agosta, G., et al.: Parallel paradigms and run-time management techniques for many-core architectures: the 2PARMA approach. In: 2011 9th IEEE International Conference on Industrial Informatics, pp. 835–840, July 2011. https://doi.org/10.1109/INDIN.2011.6035001

  27. Vavilapalli, V.K., et al.: Apache Hadoop YARN: yet another resource negotiator. In: Proceedings of the 4th Annual Symposium on Cloud Computing, SOCC 2013, pp. 5:1–5:16. ACM, New York (2013). https://doi.org/10.1145/2523616.2523633

  28. Wu, Y., Nikolopoulos, D.S., Woods, R.: Runtime support for adaptive power capping on heterogeneous SoCs. In: 2016 International Conference on Embedded Computer Systems: Architectures, Modeling and Simulation (SAMOS), pp. 71–78, July 2016. https://doi.org/10.1109/SAMOS.2016.7818333

  29. Ziegler, W., D’ippolito, R., D’Auria, M., Berends, J., Nelissen, M., Diaz, R.: Implementing a “one-stop-shop” providing SMEs with integrated HPC simulation resources using Fortissimo resources. In: eChallenges e-2014 Conference, pp. 1–11. IEEE (2014)

    Google Scholar 

  30. Zoni, D., Cremona, L., Fornaciari, W.: All-digital energy-constrained controller for general-purpose accelerators and CPUs. IEEE Embed. Syst. Lett. PP(99), 1 (2019). https://doi.org/10.1109/LES.2019.2914136

    Article  Google Scholar 

  31. Zoni, D., Flich, J., Fornaciari, W.: CUTBUF: buffer management and router design for traffic mixing in VNET-based NoCs. IEEE Trans. Parallel Distrib. Syst. 27(6), 1603–1616 (2016). https://doi.org/10.1109/TPDS.2015.2468716

    Article  Google Scholar 

  32. Zoni, D., Canidio, A., Fornaciari, W., Englezakis, P., Nicopoulos, C., Sazeides, Y.: BlackOut: enabling fine-grained power gating of buffers in Network-on-Chip routers. J. Parallel Distrib. Comput. 104, 130–145 (2017). https://doi.org/10.1016/j.jpdc.2017.01.016

    Article  Google Scholar 

  33. Zoni, D., Cremona, L., Cilardo, A., Gagliardi, M., Fornaciari, W.: Powertap: all-digital power meter modeling for run-time power monitoring. Microprocess. Microsyst. Embed. Hardw. Des. 63, 128–139 (2018). https://doi.org/10.1016/j.micpro.2018.07.007

    Article  Google Scholar 

  34. Zoni, D., Fornaciari, W.: Modeling DVFS and power-gating actuators for cycle-accurate NoC-based simulators. J. Emerg. Technol. Comput. Syst. 12(3), 27:1–27:24 (2015). https://doi.org/10.1145/2751561

    Article  Google Scholar 

Download references

Acknowledgments

This research was partially funded by the H2020 EU projects “MANGO” (grant no. 671668) and “RECIPE” (grant no. 801137 [11]).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William Fornaciari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Massari, G., Pupykina, A., Agosta, G., Fornaciari, W. (2019). Predictive Resource Management for Next-Generation High-Performance Computing Heterogeneous Platforms. In: Pnevmatikatos, D., Pelcat, M., Jung, M. (eds) Embedded Computer Systems: Architectures, Modeling, and Simulation. SAMOS 2019. Lecture Notes in Computer Science(), vol 11733. Springer, Cham. https://doi.org/10.1007/978-3-030-27562-4_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-27562-4_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-27561-7

  • Online ISBN: 978-3-030-27562-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics