Abstract
In this paper we study proof translations between labelled and label-free calculi for the logic of Bunched Implications (\(\mathrm {BI}\)). We first consider the bunched sequent calculus \(\mathrm {LBI}\) and define a labelled sequent calculus, called \(\mathrm {GBI}\), in which labels and constraints reflect the properties of a specifically tailored Kripke resource semantics of \(\mathrm {BI}\) with two total resource composition operators and explicit internalization of inconsistency. After showing the soundness of \(\mathrm {GBI}\) w.r.t. our specific Kripke frames, we show how to translate any \(\mathrm {LBI}\)-proof into a \(\mathrm {GBI}\)-proof. Building on the properties of that translation we devise a tree property that every \(\mathrm {LBI}\)-translated \(\mathrm {GBI}\)-proof enjoys. We finally show that any \(\mathrm {GBI}\)-proof enjoying this tree property (and not only \(\mathrm {LBI}\)-translated ones) can systematically be translated to an \(\mathrm {LBI}\)-proof.
Work supported by the TICAMORE project (ANR grant 16-CE91-0002).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abrusci, M., Ruet, P.: Non-commutative logic I: the multiplicative fragment. Ann. Pure Appl. Log. 101, 29–64 (2000)
Basin, D., D’Agostino, M., Gabbay, D.M., Matthews, S., Viganó, L. (eds.): Labelled Deduction, Volume 17 of Applied Logic Series. Kluwer Academic Publishers, Dordrecht (2000)
Brotherston, J., Villard, J.: Sub-classical Boolean bunched logics and the meaning of par. In: International Conference on Computer Science Logic, CSL 2014, LIPIcs, Dagsthul, Vienna, Austria, pp. 325–342 (2014)
Collinson, M., Pym, D.: Algebra and logic for resource-based systems modelling. Math. Struct. Comput. Sci. 19(5), 959–1027 (2009)
Fitting, M.: Proof Methods for Modal and Intuitionistic Logics. Reidel Publishing Company, Dordrecht (1983)
Gabbay, D.M.: Labelled Deductive Systems, Volume I - Foundations. Oxford University Press, Oxford (1996)
Galatos, N., Jipsen, P.: Distributive residuated frames and generalized bunched implication algebras. Algebra Universalis 78(3), 303–336 (2017)
Galmiche, D., Méry, D.: Semantic labelled tableaux for propositional BI without bottom. J. Log. Comput. 13(5), 707–753 (2003)
Galmiche, D., Méry, D., Pym, D.: The semantics of BI and Resource Tableaux. Math. Struct. Comput. Science 15(6), 1033–1088 (2005)
Girard, J.Y.: Linear logic. Theor. Comput. Sci. 50(1), 1–102 (1987)
Hóu, Z., Tiu, A., Goré, R.: A labelled sequent calculus for BBI: proof theory and proof search. In: Galmiche, D., Larchey-Wendling, D. (eds.) TABLEAUX 2013. LNCS (LNAI), vol. 8123, pp. 172–187. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40537-2_16
Ishtiaq, S., O’Hearn, P.: BI as an assertion language for mutable data structures. In: 28th ACM Symposium on Principles of Programming Languages, POPL 2001, London, UK, pp. 14–26 (2001)
Kaminski, M., Francez, N.: The Lambek calculus extended with intuitionistic propositional logic. Studia Logica 104(5), 1051–1082 (2016)
Larchey-Wendling, D.: The formal strong completeness of partial monoidal Boolean BI. J. Log. Comput. 26(2), 605–640 (2014)
O’Hearn, P.W., Pym, D.: The logic of bunched implications. Bull. Symb. Log. 5(2), 215–244 (1999)
Pinto, L., Uustalu, T.: Proof search and counter-model construction for bi-intuitionistic propositional logic with labelled sequents. In: Giese, M., Waaler, A. (eds.) TABLEAUX 2009. LNCS (LNAI), vol. 5607, pp. 295–309. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02716-1_22
Pym, D.: On bunched predicate logic. In: 14th Symposium on Logic in Computer Science, Trento, Italy, pp. 183–192. IEEE Computer Society Press, July 1999
Pym, D.: The Semantics and Proof Theory of the Logic of Bunched Implications, volume 26 of Applied Logic Series. Kluwer Academic Publishers, Dordrecht (2002)
Reynolds, J.: Separation logic: a logic for shared mutable data structures. In: IEEE Symposium on Logic in Computer Science, Copenhagen, Danemark, pp. 55–74, July 2002
Schmitt, S., Kreitz, C.: Converting non-classical matrix proofs into sequent-style systems. In: McRobbie, M.A., Slaney, J.K. (eds.) CADE 1996. LNCS, vol. 1104, pp. 418–432. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61511-3_104
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Galmiche, D., Marti, M., Méry, D. (2019). Relating Labelled and Label-Free Bunched Calculi in BI Logic. In: Cerrito, S., Popescu, A. (eds) Automated Reasoning with Analytic Tableaux and Related Methods. TABLEAUX 2019. Lecture Notes in Computer Science(), vol 11714. Springer, Cham. https://doi.org/10.1007/978-3-030-29026-9_8
Download citation
DOI: https://doi.org/10.1007/978-3-030-29026-9_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-29025-2
Online ISBN: 978-3-030-29026-9
eBook Packages: Computer ScienceComputer Science (R0)