Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

An Evidential Semi-supervised Label Aggregation Approach

  • Conference paper
  • First Online:
Knowledge Science, Engineering and Management (KSEM 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11775))

Abstract

Crowdsourcing is a powerful concept that typically takes advantage of human intelligence to deal with problems in many fields most importantly in machine learning. Indeed, it enables to collect training labels in a fast and cheap way for supervised algorithms. The only major challenge is that the quality of the contributions is not always guaranteed because of the expertise heterogeneity of the participants. One of the basic strategies to overcome this problem is to assign each task to multiple workers and then combine their answers in order to obtain a single reliable one. This paper provides a new iterative approach that aggregates imperfect labels using the supervision of few gold labels under the evidence theory. Besides of inferring the consensus answers, the workers’ accuracies and the questions difficulties are as well estimated. A comparative evaluation on synthetic and real datasets confirms the effectiveness of our semi-supervised approach over the baselines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zheng, Y., Wang, J., Li, G., Feng, J.: QASCA: a quality-aware task assignment system for crowdsourcing applications. In: International Conference on Management of Data, pp. 1031–1046 (2015)

    Google Scholar 

  2. Yan, T., Kumar, V., Ganesan, D.: Designing games with a purpose. Commun. ACM 51(8), 58–67 (2008)

    Google Scholar 

  3. Snow, R., O’Connor, B., Jurafsky, D., Ng, A.Y.: Cheap and fast but is it good? Evaluation non-expert annotations for natural language tasks. In: The Conference on Empirical Methods in Natural Languages Processing, pp. 254–263 (2008)

    Google Scholar 

  4. Kuncheva, L., Whitaker, C., Shipp, C., Duin, R.: Limits on the majority vote accuracy in classifier fusion. Pattern Anal. Appl. 6, 22–31 (2003)

    Article  MathSciNet  Google Scholar 

  5. Sheng, V.S., Provost, F., Ipeirotis, P.G.: Get another label? Improving data quality and data mining using multiple, noisy labellers. In: International Conference on Knowledge Discovery and Data Mining, pp. 614–622 (2008)

    Google Scholar 

  6. Shafer, G.: A Mathematical Theory of Evidence, vol. 1. Princeton University Press, Princeton (1976)

    MATH  Google Scholar 

  7. Dempster, A.P.: Upper and lower probabilities induced by a multivalued mapping. Ann. Math. Stat. 38, 325–339 (1967)

    Article  MathSciNet  Google Scholar 

  8. Jousselme, A.-L., Grenier, D., Bossé, É.: A new distance between two bodies of evidence. Inf. Fusion 2, 91–101 (2001)

    Article  Google Scholar 

  9. Lefèvre, E., Elouedi, Z.: How to preserve the confict as an alarm in the combination of belief functions? Decis. Support Syst. 56, 326–333 (2013)

    Article  Google Scholar 

  10. Smets, P.: The combination of evidence in the transferable belief model. IEEE Trans. Pattern Anal. Mach. Intell. 12(5), 447–458 (1990)

    Article  Google Scholar 

  11. Raykar, V.C., Yu, S.: Eliminating spammers and ranking annotators for crowdsourced labelling tasks. J. Mach. Learn. Res. 13, 491–518 (2012)

    MathSciNet  MATH  Google Scholar 

  12. Dawid, A.P., Skene, A.M.: Maximum likelihood estimation of observer error-rates using the EM algorithm. Appl. Stat. 28, 20–28 (2010)

    Article  Google Scholar 

  13. Karger, D.R., Oh, S., Shah, D.: Budget-optimal task allocation for reliable crowdsourcing systems. Oper. Res. 62, 1–24 (2014)

    Article  Google Scholar 

  14. Raykar, V.C., et al.: Supervised learning from multiple experts: whom to trust when everyone lies a bit. In: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 889–896 (2009)

    Google Scholar 

  15. Khattak, F.K., Salleb, A.: Quality control of crowd labelling through expert evaluation. In: The Neural Information Processing Systems 2nd Workshop on Computational Social Science and the Wisdom of Crowds, pp. 27–29 (2011)

    Google Scholar 

  16. Lee, K., Caverlee, J., Webb, S.: The social honeypot project: protecting online communities from spammers. In: International World Wide Web Conference, pp. 1139–1140 (2010)

    Google Scholar 

  17. Smets, P., Mamdani, A., Dubois, D., Prade, H.: Non Standard Logics for Automated Reasoning, pp. 253–286. Academic Press, London (1988)

    MATH  Google Scholar 

  18. Ben Rjab, A., Kharoune, M., Miklos, Z., Martin, A.: Characterization of experts in crowdsourcing platforms. In: Vejnarová, J., Kratochvíl, V. (eds.) BELIEF 2016. LNCS (LNAI), vol. 9861, pp. 97–104. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45559-4_10

    Chapter  Google Scholar 

  19. Watanabe, M., Yamaguchi, K.: The EM Algorithm and Related Statistical Models, p. 250. CRC Press, Boca Raton (2003)

    Book  Google Scholar 

  20. Li, J., Li, X., Yang, B., Sun, X.: Segmentation-based image copy-move forgery detection scheme. IEEE Trans. Inf. Forensics Secur. 10, 507–518 (2015)

    Article  Google Scholar 

  21. Liu, K., Cheung, W.K., Liu, J.: Detecting multiple stochastic network motifs in network data. Knowl. Inf. Syst. 42, 49–74 (2015)

    Article  Google Scholar 

  22. Whitehill, J., Wu, T., Bergsma, J., Movellan, J.R., Ruvolo, P.L.: Whose vote should count more: optimal integration of labels from labellers of unknown expertise. In: Neural Information Processing Systems, pp. 2035–2043 (2009)

    Google Scholar 

  23. Abassi, L., Boukhris, I.: Crowd label aggregation under a belief function framework. In: Lehner, F., Fteimi, N. (eds.) KSEM 2016. LNCS (LNAI), vol. 9983, pp. 185–196. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47650-6_15

    Chapter  Google Scholar 

  24. Abassi, L., Boukhris, I.: A gold standards-based crowd label aggregation within the belief function theory. In: Benferhat, S., Tabia, K., Ali, M. (eds.) IEA/AIE 2017. LNCS (LNAI), vol. 10351, pp. 97–106. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60045-1_12

    Chapter  MATH  Google Scholar 

  25. Abassi, L., Boukhris, I.: Iterative aggregation of crowdsourced tasks within the belief function theory. In: Antonucci, A., Cholvy, L., Papini, O. (eds.) ECSQARU 2017. LNCS (LNAI), vol. 10369, pp. 159–168. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61581-3_15

    Chapter  Google Scholar 

  26. Abassi, L., Boukhris, I.: A worker clustering-based approach of label aggregation under the belief function theory. Appl. Intell. 49, 53–62 (2018)

    Article  Google Scholar 

  27. Abassi, L., Boukhris, I.: Imprecise label aggregation approach under the belief function theory. In: Abraham, A., Cherukuri, A.K., Melin, P., Gandhi, N. (eds.) Intelligent Systems Design and Applications, vol. 941, pp. 607–616. Springer, Cham (2018)

    Chapter  Google Scholar 

  28. Koulougli, D., HadjAli, A., Rassoul, I.: Handling query answering in crowdsourcing systems: a belief function-based approach. In: Annual Conference of the North American Fuzzy Information Processing Society (NAFIPS), pp. 1–6 (2016)

    Google Scholar 

  29. Welinder, P., Branson, S., Perona, P., Belongie, S.J.: The multidimensional wisdom of crowds. In: Neural Information Processing Systems, pp. 2424–2432 (2010)

    Google Scholar 

  30. Frank, A.: UCI machine learning repository (1987). http://archive.ics.uci.edu/ml

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lina Abassi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Abassi, L., Boukhris, I. (2019). An Evidential Semi-supervised Label Aggregation Approach. In: Douligeris, C., Karagiannis, D., Apostolou, D. (eds) Knowledge Science, Engineering and Management. KSEM 2019. Lecture Notes in Computer Science(), vol 11775. Springer, Cham. https://doi.org/10.1007/978-3-030-29551-6_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29551-6_60

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29550-9

  • Online ISBN: 978-3-030-29551-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics