Abstract
This paper introduces the abstraction of max-plus linear (MPL) systems via predicates. Predicates are automatically selected from system matrix, as well as from the specifications under consideration. We focus on verifying time-difference specifications, which encompass the relation between successive events in MPL systems. We implement a bounded model checking (BMC) procedure over a predicate abstraction of the given MPL system, to verify the satisfaction of time-difference specifications. Our predicate abstractions are experimentally shown to improve on existing MPL abstractions algorithms. Furthermore, with focus on the BMC algorithm, we can provide an explicit upper bound on the completeness threshold by means of the transient and the cyclicity of the underlying MPL system.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
For the sake of simplicity, we write the elements of \(\texttt {fin}_i\) in a strictly increasing order.
- 2.
In this paper, we always use \(p\equiv x_i-x_j\ge c\) as a predicate.
- 3.
Notice that, in Definition 6 we consider \(\mathcal {AP}\) as a set of time-difference propositions.
- 4.
Notice a loop-back transition from \(\hat{s}_k\) to \(\hat{s}_l\) in \(\pi _{loop}\).
References
Adzkiya, D., De Schutter, B., Abate, A.: Finite abstractions of max-plus-linear systems. IEEE Trans. Autom. Control. 58(12), 3039–3053 (2013). https://doi.org/10.1109/TAC.2013.2273299
Adzkiya, D., Zhang, Y., Abate, A.: \(\text{VeriSiMPL}\) 2: an open-sourcesoftware for the verification of max-plus-linear systems. Discrete Event Dyn. Syst. 26(1), 109–145 (2016). https://doi.org/10.1007/s10626-015-0218-x
Alur, R., Dang, T., Ivančić, F.: Progress on reachability analysis of hybrid systems using predicate abstraction. In: Maler, O., Pnueli, A. (eds.) HSCC 2003. LNCS, vol. 2623, pp. 4–19. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36580-X_4
Baccelli, F., Cohen, G., Olsder, G.J., Quadrat, J.P.: Synchronization and Linearity: An Algebra for Discrete Event Systems. Wiley, Chichester (1992)
Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge (2008)
Ball, T., Majumdar, R., Millstein, T., Rajamani, S.K.: Automatic predicate abstraction of C programs. In: Proceedings of Programming Language Design and Implementation 2001 (PLDI 2001), vol. 36, pp. 203–213. ACM (2001). https://doi.org/10.1145/381694.378846
Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-49059-0_14
Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y., et al.: Bounded model checking. Adv. Comput. 58(11), 117–148 (2003)
Biere, A., Heljanko, K., Junttila, T., Latvala, T., Schuppan, V.: Linear encodings of bounded LTL model checking. Log. Methods Comput. Sci. 2(5), 1–64 (2006). https://doi.org/10.2168/LMCS-2(5:5)2006
Brackley, C.A., Broomhead, D.S., Romano, M.C., Thiel, M.: A Max-plus model of ribosome dynamics during mRNA translation. J. Theor. Biol. 303, 128–140 (2012). https://doi.org/10.1016/j.jtbi.2012.03.007
Cimatti, A., et al.: NuSMV 2: an opensource tool for symbolic model checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 359–364. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45657-0_29
Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 154–169. Springer, Heidelberg (2000). https://doi.org/10.1007/10722167_15
Clarke, E., Grumberg, O., Talupur, M., Wang, D.: Making predicate abstraction efficient. In: Hunt, W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 126–140. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45069-6_14
Clarke, E., Kroening, D., Ouaknine, J., Strichman, O.: Completeness and complexity of bounded model checking. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 85–96. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24622-0_9
Clarke, E., Kroening, D., Sharygina, N., Yorav, K.: Predicate abstraction of ANSI-C programs using SAT. Form. Methods Syst. Des. 25(2–3), 105–127 (2004). https://doi.org/10.1023/B:FORM.0000040025.89719.f3
Clarke, E., Talupur, M., Veith, H., Wang, D.: SAT based predicate abstraction for hardware verification. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 78–92. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24605-3_7
Clarke, E.M., Grumberg, O., Long, D.E.: Model checking and abstraction. ACM Trans. Program. Lang. Syst. (TOPLAS) 16(5), 1512–1542 (1994). https://doi.org/10.1145/186025.186051
Comet, J.P.: Application of max-plus algebra to biological sequence comparisons. Theor. Comput. Sci. 293(1), 189–217 (2003). https://doi.org/10.1016/S0304-3975(02)00237-2
Das, S., Dill, D.L., Park, S.: Experience with predicate abstraction. In: Halbwachs, N., Peled, D. (eds.) CAV 1999. LNCS, vol. 1633, pp. 160–171. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48683-6_16
De Schutter, B.: On the ultimate behavior of the sequence of consecutive powers of a matrix in the max-plus algebra. Linear Algebra Its Appl. 307(1–3), 103–117 (2000). https://doi.org/10.1016/S0024-3795(00)00013-6
Flanagan, C., Qadeer, S.: Predicate abstraction for software verification. In: Proceedings of the 29th Principles of Programming Languages (POPL 2002), vol. 37, pp. 191–202. ACM (2002). https://doi.org/10.1145/503272.503291
Graf, S., Saidi, H.: Construction of abstract state graphs with PVS. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63166-6_10
Heemels, W., De Schutter, B., Bemporad, A.: Equivalence of hybrid dynamical models. Automatica 37(7), 1085–1091 (2001). https://doi.org/10.1016/S0005-1098(01)00059-0
Heidergott, B., Olsder, G.J., Van der Woude, J.: Max Plus at Work: Modeling and Analysis of Synchronized Systems: A Course on Max-Plus Algebra and Its Applications. Princeton University Press, Princeton (2014)
Heljanko, K., Junttila, T., Latvala, T.: Incremental and complete bounded model checking for full PLTL. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 98–111. Springer, Heidelberg (2005). https://doi.org/10.1007/11513988_10
Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: Proceedings of the ACM Symposium on Principles of Programming Languages (POPL 2002), pp. 58–70 (2002). https://doi.org/10.1145/503272.503279
Imaev, A., Judd, R.P.: Hierarchial modeling of manufacturing systems using max-plus algebra. In: Proceedings of American Control Conference 2008, pp. 471–476 (2008)
Latvala, T., Biere, A., Heljanko, K., Junttila, T.: Simple is better: efficient bounded model checking for past LTL. In: Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 380–395. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30579-8_25
Mufid, M.S., Adzkiya, D., Abate, A.: Tropical abstractions of max-plus linear systems. In: Jansen, D.N., Prabhakar, P. (eds.) FORMATS 2018. LNCS, vol. 11022, pp. 271–287. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00151-3_16
Mufid, M.S., Adzkiya, D., Abate, A.: Bounded model checking of max-plus linear systems via predicate abstractions. arXiv e-prints arXiv:1907.03564, July 2019
Acknowledgements
The first author is supported by Indonesia Endowment Fund for Education (LPDP), while the third acknowledges the support of the Alan Turing Institute, London, UK.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Syifa’ul Mufid, M., Adzkiya, D., Abate, A. (2019). Bounded Model Checking of Max-Plus Linear Systems via Predicate Abstractions. In: André, É., Stoelinga, M. (eds) Formal Modeling and Analysis of Timed Systems. FORMATS 2019. Lecture Notes in Computer Science(), vol 11750. Springer, Cham. https://doi.org/10.1007/978-3-030-29662-9_9
Download citation
DOI: https://doi.org/10.1007/978-3-030-29662-9_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-29661-2
Online ISBN: 978-3-030-29662-9
eBook Packages: Computer ScienceComputer Science (R0)