Abstract
The significant industrial developments in terms of digitalization and optimization, have focused the attention on anomaly detection techniques. This work presents a detailed study about the performance of different one-class intelligent techniques, used for detecting anomalies in the performance of an ultrasonic sensor. The initial dataset is obtained from a control level plant, and different percentage variations in the sensor measurements are generated. For each variation, the performance of three one-class classifiers are assessed, obtaining very good results.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alaiz Moretón, H., Calvo Rolle, J., García, I., Alonso Alvarez, A.: Formalization and practical implementation of a conceptual model for PID controller tuning. Asian J. Control 13(6), 773–784 (2011)
Baruque, B., Porras, S., Jove, E., Calvo-Rolle, J.L.: Geothermal heat exchanger energy prediction based on time series and monitoring sensors optimization. Energy 171, 49–60 (2019). http://www.sciencedirect.com/science/article/pii/S0360544218325817
Bradley, A.P.: The use of the area under the roc curve in the evaluation of machine learning algorithms. Pattern Recogn. 30(7), 1145–1159 (1997)
Casale, P., Pujol, O., Radeva, P.: Approximate convex hulls family for one-class classification. In: Sansone, C., Kittler, J., Roli, F. (eds.) MCS 2011. LNCS, vol. 6713, pp. 106–115. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21557-5_13
Casteleiro-Roca, J.L., Barragán, A.J., Segura, F., Calvo-Rolle, J.L., Andújar, J.M.: Fuel cell output current prediction with a hybrid intelligent system. Complexity 2019, 10 (2019)
Casteleiro-Roca, J.L., et al.: Short-term energy demand forecast in hotels using hybrid intelligent modeling. Sensors 19(11), 2485 (2019)
Casteleiro-Roca, J.L., Pérez, J.A.M., Piñón-Pazos, A.J., Calvo-Rolle, J.L., Corchado, E.: Modeling the electromyogram (EMG) of patients undergoing anesthesia during surgery. In: Herrero, Á., Sedano, J., Baruque, B., Quintián, H., Corchado, E. (eds) 10th International Conference on Soft Computing Models in Industrial and Environmental Applications. Advances in Intelligent Systems and Computing, vol. 368, pp. 273–283. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19719-7_24
Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv. (CSUR) 41(3), 15 (2009)
Chen, Y., Zhou, X.S., Huang, T.S.: One-class SVM for learning in image retrieval. In: Proceedings 2001 International Conference on Image Processing 2001, vol. 1, pp. 34–37. IEEE (2001)
Fernández-Francos, D., Fontenla-Romero, Ó., Alonso-Betanzos, A.: One-class convex hull-based algorithm for classification in distributed environments. IEEE Trans. Syst. Man. Cybern. Syst. 1–11 (2018)
Fernández-Serantes, L.A., Estrada Vázquez, R., Casteleiro-Roca, J.L., Calvo-Rolle, J.L., Corchado, E.: Hybrid intelligent model to predict the SOC of a LFP power cell type. In: Polycarpou, M., de Carvalho, A.C.P.L.F., Pan, J.-S., Woźniak, M., Quintian, H., Corchado, E. (eds.) HAIS 2014. LNCS (LNAI), vol. 8480, pp. 561–572. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07617-1_49
Garcia, R.F., Rolle, J.L.C., Castelo, J.P., Gomez, M.R.: On the monitoring task of solar thermal fluid transfer systems using nn based models and rule based techniques. Eng. Appl. Artif. Intell. 27, 129–136 (2014)
González, G., Angelo, C.D., Forchetti, D., Aligia, D.: Diagnóstico de fallas en el convertidor del rotor en generadores de inducción con rotor bobinado. Revista Iberoamericana de Automática e Informática Industrial 15(3), 297–308 (2018). https://polipapers.upv.es/index.php/RIAI/article/view/9042
Gonzalez-Cava, J.M., Reboso, J.A., Casteleiro-Roca, J.L., Calvo-Rolle, J.L., Méndez Pérez, J.A.: A novel fuzzy algorithm to introduce new variables in the drug supply decision-making process in medicine. Complexity 2018, 15 (2018)
Goodfellow, I., Bengio, Y., Courville, A., Bengio, Y.: Deep Learning, vol. 1. MIT press, Cambridge (2016)
Hobday, M.: Product complexity, innovation and industrial organisation. Res. Policy 26(6), 689–710 (1998)
Jove, E., Aláiz-Moretón, H., Casteleiro-Roca, J.L., Corchado, E., Calvo-Rolle, J.L.: Modeling of bicomponent mixing system used in the manufacture of wind generator blades. In: Corchado, E., Lozano, J.A., Quintián, H., Yin, H. (eds.) IDEAL 2014. LNCS, vol. 8669, pp. 275–285. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10840-7_34
Jove, E., Alaiz-Moretón, H., García-Rodríguez, I., Benavides-Cuellar, C., Casteleiro-Roca, J.L., Calvo-Rolle, J.L.: PID-ITS: an intelligent tutoring system for PID tuning learning process. In: Pérez García, H., Alfonso-Cendón, J., Sánchez González, L., Quintián, H., Corchado, E. (eds.) SOCO/CISIS/ICEUTE -2017. AISC, vol. 649, pp. 726–735. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-67180-2_71
Jove, E., Antonio Lopez-Vazquez, J., Isabel Fernandez-Ibanez, M., Casteleiro-Roca, J.L., Luis Calvo-Rolle, J.: Hybrid intelligent system to predict the individual academic performance of engineering students. Int. J. Eng. Educ. 34(3), 895–904 (2018)
Jove, E., Casteleiro-Roca, J.L., Quintián, H., Méndez-Pérez, J.A., Calvo-Rolle, J.L.: A fault detection system based on unsupervised techniques for industrial control loops. Expert Syst. 2019, e12395 (2019)
Jove, E., Casteleiro-Roca, J.-L., Quintián, H., Méndez-Pérez, J.A., Calvo-Rolle, J.L.: A new approach for system malfunctioning over an industrial system control loop based on unsupervised techniques. In: Graña, M., López-Guede, J.M., Etxaniz, O., Herrero, Á., Sáez, J.A., Quintián, H., Corchado, E. (eds.) SOCO’18-CISIS’18-ICEUTE’18 2018. AISC, vol. 771, pp. 415–425. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-94120-2_40
Jove, E., Casteleiro-Roca, J.-L., Quintián, H., Méndez-Pérez, J.A., Calvo-Rolle, J.L.: Outlier generation and anomaly detection based on intelligent one-class techniques over a bicomponent mixing system. In: Martínez Álvarez, F., Troncoso Lora, A., Sáez Muñoz, J.A., Quintián, H., Corchado, E. (eds.) SOCO 2019. AISC, vol. 950, pp. 399–410. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-20055-8_38
Jove, E., et al.: Modelling the hypnotic patient response in general anaesthesia using intelligent models. Logic J. IGPL 27, 189–201 (2018)
Jove, E., Gonzalez-Cava, J.M., Casteleiro-Roca, J.L., Pérez, J.A.M., Calvo-Rolle, J.L., de Cos Juez, F.J.: An intelligent model to predict ANI in patients undergoing general anesthesia. In: Pérez García, H., Alfonso-Cendón, J., Sánchez González, L., Quintián, H., Corchado, E. (eds.) SOCO/CISIS/ICEUTE -2017. AISC, vol. 649, pp. 492–501. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-67180-2_48
Jove, E., Gonzalez-Cava, J.M., Casteleiro-Roca, J.-L., Quintián, H., Méndez-Pérez, J.A., Calvo-Rolle, J.L.: Anomaly detection on patients undergoing general anesthesia. In: Martínez Álvarez, F., Troncoso Lora, A., Sáez Muñoz, J.A., Quintián, H., Corchado, E. (eds.) CISIS/ICEUTE -2019. AISC, vol. 951, pp. 141–152. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-20005-3_15
Moreno-Fernandez-de Leceta, A., Lopez-Guede, J.M., Ezquerro Insagurbe, L., Ruiz de Arbulo, N., Graa, M.: A novel methodology for clinical semantic annotations assessment. Logic J. IGPL 26(6), 569–580 (2018). http://dx.doi.org/10.1093/jigpal/jzy021
Li, K.L., Huang, H.K., Tian, S.F., Xu, W.: Improving one-class SVM for anomaly detection. In: 2003 International Conference on Machine Learning and Cybernetics, vol. 5, pp. 3077–3081. IEEE (2003)
Manuel Vilar-Martinez, X., Aurelio Montero-Sousa, J., Luis Calvo-Rolle, J., Luis Casteleiro-Roca, J.: Expert system development to assist on the verification of “tacan” system performance. Dyna 89(1), 112–121 (2014)
MathWorks: Autoencoder, 29 January2019. https://es.mathworks.com/help/deeplearning/ref/trainautoencoder.html
MathWorks: fitcsvm, 29 January 2019. https://es.mathworks.com/help/stats/fitcsvm.html
MathWorks: predict, 29 January 2019. https://es.mathworks.com/help/stats/classreg.learning.classif.compactclassificationsvm.predict.html
Quintián, H., Corchado, E.: Beta scale invariant map. Eng. Appl. Artif. Intell. 59, 218–235 (2017)
Rebentrost, P., Mohseni, M., Lloyd, S.: Quantum support vector machine for big data classification. Phys. Rev. Lett. 113, 130503 (2014). https://link.aps.org/doi/10.1103/PhysRevLett.113.130503
Sakurada, M., Yairi, T.: Anomaly detection using autoencoders with nonlinear dimensionality reduction. In: Proceedings of the MLSDA 2014 2nd Workshop on Machine Learning for Sensory Data Analysis, p. 4. ACM (2014)
Sánchez-González, L., et al.: Use of classifiers and recursive feature elimination to assess boar sperm viability. Logic J. IGPL 26(6), 629–637 (2018)
Segovia, F., Górriz, J.M., Ramírez, J., Martinez-Murcia, F.J., García-Pérez, M.: Using deep neural networks along with dimensionality reduction techniques to assist the diagnosis of neurodegenerative disorders. Logic J. IGPL 26(6), 618–628 (2018). http://dx.doi.org/10.1093/jigpal/jzy026
Shalabi, L.A., Shaaban, Z.: Normalization as a preprocessing engine for data mining and the approach of preference matrix. In: 2006 International Conference on Dependability of Computer Systems, pp. 207–214, May 2006
Vega Vega, R., Quintián, H., Calvo-Rolle, J.L., Herrero, A., Corchado, E.: Gaining deep knowledge of Android malware families through dimensionality reduction techniques. Logic J. IGPL 27(2), 160–176 (2018). https://doi.org/10.1093/jigpal/jzy030
Vega Vega, R., Quintián, H., Cambra, C., Basurto, N., Herrero, Á., Calvo-Rolle, J.L.: Delving into android malware families with a novel neural projection method. Complexity 2019, 10 (2019)
Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.A.: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11, 3371–3408 (2010)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Jove, E. et al. (2019). Anomaly Detection Over an Ultrasonic Sensor in an Industrial Plant. In: Pérez García, H., Sánchez González, L., Castejón Limas, M., Quintián Pardo, H., Corchado Rodríguez, E. (eds) Hybrid Artificial Intelligent Systems. HAIS 2019. Lecture Notes in Computer Science(), vol 11734. Springer, Cham. https://doi.org/10.1007/978-3-030-29859-3_42
Download citation
DOI: https://doi.org/10.1007/978-3-030-29859-3_42
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-29858-6
Online ISBN: 978-3-030-29859-3
eBook Packages: Computer ScienceComputer Science (R0)