Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Real Time Object Detection on Aerial Imagery

  • Conference paper
  • First Online:
Computer Analysis of Images and Patterns (CAIP 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11678))

Included in the following conference series:

Abstract

Aerial images usually are huge (around 2K resolution). Such high-resolution images contain thousands of small objects, and detecting all of them is a very challenging problem. The complexity of detection and classification in real-time is much higher than the usual images (<1K with high Object to Image Ratio OIR). Deep learning has many algorithms for object detection, but they are not designed for handling aerial images, and these algorithms are often sub-optimal for small scale object detection and their precise localization. In this work, a novel technique based on a modified SSD architecture OIR-SSD has proposed for real-time object detection on aerial images attaining high mean Average Precision (mAP). OIR-SSD has two approaches. The approach-I proposed for higher mAP, whereas the approach-II proposed to achieve real-time object detection. The approach-I has improved mAP from 0.72 to 0.92 (28% improvement) on Stanford data-set while from 0.04 to 0.44 (1100% improvement) on Visedrone2018 at 4 Frames Per Second (FPS) whereas the approach-II has improved mAP from 0.72 to 0.82 at 42 FPS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Global Market Insights. Aerial Imaging Market Share - Industry Size, Outlook Report 2018–2024, May 2018. https://www.gminsights.com/industry-analysis/aerial-imaging-market. Accessed 12 Mar 2018

  2. IndustryARC. Aerial Imaging Market, December 2018. https://industryarc.com/Report/16300/aerial-imaging-market.html. Accessed 12 Mar 2018

  3. Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part-based models. IEEE Trans. Pattern Anal. Mach. Intell. 32(9), 1627–1645 (2010)

    Article  Google Scholar 

  4. Viola, P., Jones, M., et al.: Robust real-time object detection. Int. J. Comput. Vis. 57(2), 137–154 (2001)

    Article  Google Scholar 

  5. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  6. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: International Conference on Computer Vision & Pattern Recognition (CVPR 2005), vol. 1, pp. 886–893. IEEE Computer Society (2005)

    Google Scholar 

  7. Lienhart, R., Maydt, J.: An extended set of Haar-like features for rapid object detection. In: Proceedings of the International Conference on Image Processing, vol. 1, p. I. IEEE (2002)

    Google Scholar 

  8. Cortes, C., Vapnik, V.: Support vector machine. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  9. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55(1), 119–139 (1997)

    Article  MathSciNet  Google Scholar 

  10. Hinton, G.E., Osindero, S., Teh, Y.-W.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006)

    Article  MathSciNet  Google Scholar 

  11. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)

    Article  MathSciNet  Google Scholar 

  12. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)

    Article  Google Scholar 

  13. Girshick, R.B., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. CoRR, abs/1311.2524 (2013)

    Google Scholar 

  14. Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: unified, real-time object detection. CoRR, abs/1506.02640 (2015)

    Google Scholar 

  15. Liu, W., et al.: SSD: single shot multibox detector. CoRR, abs/1512.02325 (2015)

    Google Scholar 

  16. Bojarski, M., et al.: End to end learning for self-driving cars. CoRR, abs/1604.07316 (2016)

    Google Scholar 

  17. Robicquet, A., Sadeghian, A., Alahi, A., Savarese, S.: Learning social etiquette: human trajectory understanding in crowded scenes. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 549–565. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_33

    Chapter  Google Scholar 

  18. Zhu, P., Wen, L., Bian, X., Ling, H., Hu, Q.: Vision meets drones: a challenge. arXiv preprint arXiv:1804.07437 (2018)

  19. Girshick, R.B.: Fast R-CNN. CoRR, abs/1504.08083 (2015)

    Google Scholar 

  20. Ren, S., He, K., Girshick, R.B., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. CoRR, abs/1506.01497 (2015)

    Google Scholar 

  21. Lin, T., Goyal, P., Girshick, R.B., He, K., Dollár, P.: Focal loss for dense object detection. CoRR, abs/1708.02002 (2017)

    Google Scholar 

  22. Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. CoRR, abs/1612.08242 (2016)

    Google Scholar 

  23. Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement. CoRR, abs/1804.02767 (2018)

    Google Scholar 

  24. Maggiori, E., Tarabalka, Y., Charpiat, G., Alliez, P.: Can semantic labeling methods generalize to any city? The Inria aerial image labeling benchmark. In: 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 3226–3229. IEEE (2017)

    Google Scholar 

  25. Wang, X., Cheng, P., Liu, X., Uzochukwu, B.: Fast and accurate, convolutional neural network based approach for object detection from UAV. CoRR, abs/1808.05756 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raghav Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sharma, R., Pandey, R., Nigam, A. (2019). Real Time Object Detection on Aerial Imagery. In: Vento, M., Percannella, G. (eds) Computer Analysis of Images and Patterns. CAIP 2019. Lecture Notes in Computer Science(), vol 11678. Springer, Cham. https://doi.org/10.1007/978-3-030-29888-3_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29888-3_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29887-6

  • Online ISBN: 978-3-030-29888-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics