Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Detection of Anomalous Traffic Patterns and Insight Analysis from Bus Trajectory Data

  • Conference paper
  • First Online:
PRICAI 2019: Trends in Artificial Intelligence (PRICAI 2019)

Abstract

Detection of anomalous patterns from traffic data is closely related to analysis of traffic accidents, fault detection, flow management, and new infrastructure planning. Existing methods on traffic anomaly detection are modelled on taxi trajectory data and have shortcoming that the data may lose much information about actual road traffic situation, as taxi drivers can select optimal route for themselves to avoid traffic anomalies. We employ bus trajectory data as it reflects real traffic conditions on the road to detect city-wide anomalous traffic patterns and to provide broader range of insights into these anomalies. Taking these considerations, we first propose a feature visualization method by mapping extracted 3-dimensional hidden features to red-green-blue (RGB) color space with a deep sparse autoencoder (DSAE). A color trajectory (CT) is produced by encoding a trajectory with RGB colors. Then, a novel algorithm is devised to detect spatio-temporal outliers with spatial and temporal properties extracted from the CT. We also integrate the CT with the geographic information system (GIS) map to obtain insights for understanding the traffic anomaly locations, and more importantly the road influence affected by the corresponding anomalies. Our proposed method was tested on three real-world bus trajectory data sets to demonstrate the excellent performance of high detection rates and low false alarm rates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Guiyang open government data platform. http://www.gyopendata.gov.cn/city/index.htm. Accessed 1 Feb 2018

  2. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv. (CSUR) 41(3), 15 (2009)

    Article  Google Scholar 

  3. Chawla, S., Zheng, Y., Hu, J.: Inferring the root cause in road traffic anomalies. In: Proceedings of 2012 IEEE 12th International Conference on Data Mining, pp. 141–150 (2012)

    Google Scholar 

  4. He, H., Garcia, E.A.: Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 9, 1263–1284 (2008)

    Google Scholar 

  5. Juvonen, A., Hamalainen, T.: An efficient network log anomaly detection system using random projection dimensionality reduction. In: Proceedings of 2014 6th International Conference on New Technologies, Mobility and Security (NTMS), pp. 1–5. IEEE (2014)

    Google Scholar 

  6. Kong, X., Song, X., Xia, F., Guo, H., Wang, J., Tolba, A.: LoTAD: long-term traffic anomaly detection based on crowdsourced bus trajectory data. World Wide Web 21(3), 825–847 (2018)

    Article  Google Scholar 

  7. Kuang, W., An, S., Jiang, H.: Detecting traffic anomalies in urban areas using taxi GPS data. Math. Probl. Eng. 2015, 1–14 (2015)

    Article  Google Scholar 

  8. Lakhina, A., Crovella, M., Diot, C.: Diagnosing network-wide traffic anomalies. In: ACM SIGCOMM Computer Communication Review, vol. 34, pp. 219–230. ACM (2004)

    Google Scholar 

  9. Li, K.L., Huang, H.K., Tian, S.F., Xu, W.: Improving one-class SVM for anomaly detection. In: Proceedings of 2003 International Conference on Machine Learning Cybernetics, vol. 5, pp. 3077–3081. IEEE (2003)

    Google Scholar 

  10. Li, Y., Guo, T., Xia, R., Xie, W.: Road traffic anomaly detection based on fuzzy theory. IEEE Access 6, 40281–40288 (2018)

    Article  Google Scholar 

  11. Li, Y., Liu, W., Huang, Q.: Traffic anomaly detection based on image descriptor in videos. Multimedia Tools Appl. 75(5), 2487–2505 (2016)

    Article  Google Scholar 

  12. Liu, H., Taniguchi, T., Tanaka, Y., Takenaka, K., Bando, T.: Visualization of driving behavior based on hidden feature extraction by using deep learning. IEEE Trans. Intell. Transp. Syst. 18(9), 2477–2489 (2017)

    Article  Google Scholar 

  13. Liu, W., Zheng, Y., Chawla, S., Yuan, J., Xing, X.: Discovering spatio-temporal causal interactions in traffic data streams. In: Proc. 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1010–1018. ACM (2011)

    Google Scholar 

  14. Münz, G., Li, S., Carle, G.: Traffic anomaly detection using k-means clustering. In: GI/ITG Workshop MMBnet, pp. 13–14 (2007)

    Google Scholar 

  15. Nguyen, H., Liu, W., Rivera, P., Chen, F.: TrafficWatch: real-time traffic incident detection and monitoring using social media. In: Bailey, J., Khan, L., Washio, T., Dobbie, G., Huang, J.Z., Wang, R. (eds.) PAKDD 2016. LNCS (LNAI), vol. 9651, pp. 540–551. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31753-3_43

    Chapter  Google Scholar 

  16. Pang, L., Chawla, S., Liu, W., Zheng, Y.: On detection of emerging anomalous traffic patterns using GPS data. Data Knowl. Eng. 87, 357–373 (2013)

    Article  Google Scholar 

  17. Riveiro, M., Lebram, M., Elmer, M.: Anomaly detection for road traffic: a visual analytics framework. IEEE Trans. Intell. Transp. Syst. 18(8), 2260–2270 (2017)

    Article  Google Scholar 

  18. Tsai, C.F., Lin, C.Y.: A triangle area based nearest neighbors approach to intrusion detection. Pattern Recogn. 43(1), 222–229 (2010)

    Article  Google Scholar 

  19. Zhang, D., Li, N., Zhou, Z.H., Chen, C., Sun, L., Li, S.: iBAT: detecting anomalous taxi trajectories from GPS traces. In: Proceedings of 13th International Conference on Ubiquitous Computing, pp. 99–108. ACM (2011)

    Google Scholar 

  20. Zhang, X., Zhao, Z., Zheng, Y., Li, J.: Prediction of taxi destinations using a novel data embedding method and ensemble learning. IEEE Trans. Intell. Transp. Syst 1–11 (2019). https://doi.org/10.1109/TITS.2018.2888587

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinyan Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, X., Zhang, X., Verma, S., Liu, Y., Blumenstein, M., Li, J. (2019). Detection of Anomalous Traffic Patterns and Insight Analysis from Bus Trajectory Data. In: Nayak, A., Sharma, A. (eds) PRICAI 2019: Trends in Artificial Intelligence. PRICAI 2019. Lecture Notes in Computer Science(), vol 11672. Springer, Cham. https://doi.org/10.1007/978-3-030-29894-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29894-4_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29893-7

  • Online ISBN: 978-3-030-29894-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics