Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Dissipativity Analysis of a Class of Competitive Neural Networks with Proportional Delays

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2019: Theoretical Neural Computation (ICANN 2019)

Abstract

This paper dealt with the dissipativity problem for a class of competitive neural networks with proportional delays. Based on Lyapunov functionals approach, new sufficient conditions are derived to ensuring the strictly \((Q,\; S^{*},\; R)-\)dissipative of the model. The conditions are presented in terms of linear matrix inequalities (LMIs) and can be easily numerically checked by the MATLAB LMI toolbox. At last, a numerical example with simulation is given to illustrate the validity of the obtained theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alimi, A.M., Aouiti, C., Chérif, F., Dridi, F., M’hamdi, M.S.: Dynamics and oscillations of generalized high-order hopfield neural networks with mixed delays. Neurocomputing 321, 274–295 (2018). https://doi.org/10.1016/j.neucom.2018.01.061

    Article  Google Scholar 

  2. Aouiti, C., Assali, E.A., Cao, J., Alsaedi, A.: Global exponential convergence of neutral-type competitive neural networks with multi-proportional delays, distributed delays and time-varying delay in leakage delays. Int. J. Syst. Sci. 49(10), 2202–2214 (2018). https://doi.org/10.1080/00207721.2018.1496297

    Article  MathSciNet  Google Scholar 

  3. Aouiti, C., Assali, E.A.: Stability analysis for a class of impulsive bidirectional associative memory (BAM) neural networks with distributed delays and leakage time-varying delays. Neural Process. Lett. 1–35 (2018). https://doi.org/10.1007/s11063-018-9937-y

    Article  Google Scholar 

  4. Aouiti, C., Gharbia, I.B., Cao, J., Alsaedi, A.: Dynamics of impulsive neutral-type BAM neural networks. J. Franklin Inst. 356(4), 2294–2324 (2019). https://doi.org/10.1016/j.jfranklin.2019.01.028

    Article  MathSciNet  MATH  Google Scholar 

  5. Aouiti, C., Gharbia, I.B., Cao, J., Mhamdi, M.S., Alsaedi, A.: Existence and global exponential stability of pseudo almost periodic solution for neutral delay BAM neural networks with time-varying delay in leakage terms. Chaos Solit. Fract. 107, 111–127 (2018). https://doi.org/10.1016/j.chaos.2017.12.022

    Article  MathSciNet  MATH  Google Scholar 

  6. Aouiti, C., Miaadi, F.: Finite-time stabilization of neutral hopfield neural networks with mixed delays. Neural Process. Lett. 48(3), 1645–1669 (2018). https://doi.org/10.1007/s11063-018-9791-y

    Article  Google Scholar 

  7. Aouiti, C., Miaadi, F.: Pullback attractor for neutral hopfield neural networks with time delay in the leakage term and mixed time delays. Neural Comput. Appl. 1–10 (2018). https://doi.org/10.1007/s00521-017-3314-z

  8. Aravindh, D., Sakthivel, R., Marshal Anthoni, S.: Extended dissipativity-based non-fragile control for multi-area power systems with actuator fault. Int. J. Syst. Sci. 50(2), 256–272 (2019). https://doi.org/10.1080/00207721.2018.1551971

    Article  MathSciNet  Google Scholar 

  9. Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. 79(8), 2554–2558 (1982). https://doi.org/10.1073/pnas.79.8.2554

    Article  MathSciNet  MATH  Google Scholar 

  10. Hopfield, J.J.: Neurons with graded response have collective computational properties like those of two-state neurons. Proc. Natl. Acad. Sci. 81(10), 3088–3092 (1984). https://doi.org/10.1073/pnas.81.10.3088

    Article  MATH  Google Scholar 

  11. Manivannan, R., Mahendrakumar, G., Samidurai, R., Cao, J., Alsaedi, A.: Exponential stability and extended dissipativity criteria for generalized neural networks with interval time-varying delay signals. J. Franklin Inst. 354(11), 4353–4376 (2017). https://doi.org/10.1016/j.jfranklin.2017.04.007

    Article  MathSciNet  MATH  Google Scholar 

  12. Manivannan, R., Samidurai, R., Cao, J., Alsaedi, A., Alsaadi, F.E.: Design of extended dissipativity state estimation for generalized neural networks with mixed time-varying delay signals. Inform. Sci. 424, 175–203 (2018). https://doi.org/10.1016/j.ins.2017.10.007

    Article  MathSciNet  Google Scholar 

  13. Sun, Y., Cui, B.T.: Dissipativity analysis of neural networks with time-varying delays. Int. J. Autom. Comput. 5(3), 290–295 (2008). https://doi.org/10.1007/s11633-008-0290-x

    Article  MathSciNet  Google Scholar 

  14. Willems, J.C.: Dissipative dynamical systems part I: general theory. Arch. Ration. Mech. Anal. 45(5), 321–351 (1972). https://doi.org/10.1007/BF00276493

    Article  MATH  Google Scholar 

  15. Willems, J.C.: Dissipative dynamical systems part II: linear systems with quadratic supply rates. Arch. Ration. Mech. Anal. 45(5), 352–393 (1972). https://doi.org/10.1007/BF00276494

    Article  MATH  Google Scholar 

  16. Wu, Z.G., Park, J.H., Su, H., Chu, J.: Robust dissipativity analysis of neural networks with time-varying delay and randomly occurring uncertainties. Nonlinear Dyn. 69(3), 1323–1332 (2012). https://doi.org/10.1007/s11071-012-0350-1

    Article  MathSciNet  MATH  Google Scholar 

  17. Zeng, H.B., He, Y., Shi, P., Wu, M., Xiao, S.P.: Dissipativity analysis of neural networks with time-varying delays. Neurocomputing 168, 741–746 (2015). https://doi.org/10.1016/j.neucom.2015.05.050

    Article  Google Scholar 

  18. Zhou, L.: Delay-dependent exponential stability of cellular neural networks with multi-proportional delays. Neural Process. Lett. 38(3), 347–359 (2013). https://doi.org/10.1007/s11063-012-9271-8

    Article  Google Scholar 

  19. Zhou, L.: Dissipativity of a class of cellular neural networks with proportional delays. Nonlinear Dyn. 73(3), 1895–1903 (2013). https://doi.org/10.1007/s11071-013-0912-x

    Article  MathSciNet  MATH  Google Scholar 

  20. Zhou, L., Chen, X., Yang, Y.: Asymptotic stability of cellular neural networks with multiple proportional delays. Appl. Math. Comput. 229, 457–466 (2014). https://doi.org/10.1016/j.amc.2013.12.061

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaouki Aouiti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aouiti, C., Chérif, F., Touati, F. (2019). Dissipativity Analysis of a Class of Competitive Neural Networks with Proportional Delays. In: Tetko, I., Kůrková, V., Karpov, P., Theis, F. (eds) Artificial Neural Networks and Machine Learning – ICANN 2019: Theoretical Neural Computation. ICANN 2019. Lecture Notes in Computer Science(), vol 11727. Springer, Cham. https://doi.org/10.1007/978-3-030-30487-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30487-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30486-7

  • Online ISBN: 978-3-030-30487-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics