Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Max-Min Conflict Algorithm for the Stable Marriage Problem

  • Conference paper
  • First Online:
Knowledge Management and Acquisition for Intelligent Systems (PKAW 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11669))

Included in the following conference series:

  • 569 Accesses

Abstract

In this paper we present a max-min conflict algorithm to find a stable matching rather than the man- and woman-optimal matchings for the stable marriage problem. We solve the problem in terms of a constraint satisfaction problem, i.e. find a complete assignment for men in which every man is assigned to a woman so that the assignment does not contain any blocking pairs. To do this, we apply a local search method in which a max-conflict heuristic is used to choose the man making the maximum number of blocking pairs in a matching, while a min-conflict heuristic is used to remove all the blocking pairs formed by the chosen man. Experiments showed that our algorithm is efficient for finding a stable matching of large stable marriage problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abraham, D.J., Irving, R.W., Manlove, D.F.: The student-project allocation problem. In: Proceedings of the 14th International Symposium, Kyoto, Japan, pp. 474–484, December 2003

    Google Scholar 

  2. Codognet, P., Diaz, D.: Yet another local search method for constraint solving. In: Proceedings of the International Symposium on Stochastic Algorithms, Berlin, Germany, pp. 73–90, December 2001

    Google Scholar 

  3. Dorigo, M., Gambardella, L.M.: Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans. Evol. Comput. 1(1), 53–66 (1997)

    Article  Google Scholar 

  4. Everaere, P., Morge, M., Picard, G.: Minimal concession strategy for reaching fair, optimal and stable marriages. In: Proceedings of the 2013 International Conference on Autonomous Agents and Multi-agent Systems (AAMAS), St. Paul, MN, USA, pp. 1319–1320, May 2013

    Google Scholar 

  5. Fleiner, T., Irving, R.W., Manlove, D.F.: Efficient algorithms for generalized stable marriage and roommates problems. Theor. Comput. Sci. 381(1–3), 162–176 (2007)

    Article  MathSciNet  Google Scholar 

  6. Gale, D., Shapley, L.S.: College admissions and the stability of marriage. Am. Math. Monthly 9(1), 9–15 (1962)

    Article  MathSciNet  Google Scholar 

  7. Gelain, M., Pini, M.S., Rossi, F., Venable, K.B., Walsh, T.: Local search approaches in stable matching problems. Algorithms 6(1), 591–617 (2013)

    Article  MathSciNet  Google Scholar 

  8. Gent, I.P., Irving, R.W., Manlove, D., Prosser, P., Smith, B.M.: A constraint programming approach to the stable marriage problem. In: Proceedings of the 7th International Conference on Principles and Practice of Constraint Programming, Berlin, Heidelberg, vol. 1, pp. 225–239, December 2001

    Google Scholar 

  9. Gent, I.P., Prosser, P.: An empirical study of the stable marriage problem with ties and incomplete lists. In: Proceedings of the 15th European Conference on Artificial Intelligence, Lyon, France, pp. 141–145, July 2002

    Google Scholar 

  10. Giannakopoulos, I., Karras, P., Tsoumakos, D., Doka, K., Koziris, N.: An equitable solution to the stable marriage problem. In: 2015 IEEE 27th International Conference on Tools with Artificial Intelligence (ICTAI), Vietri sul Mare, Italy, pp. 989–996, November 2015

    Google Scholar 

  11. Irving, R.W.: An efficient algorithm for the “stable roommates” problem. J. Algorithms 6(1), 577–595 (1985)

    Article  MathSciNet  Google Scholar 

  12. McVitie, D.G., Wilson, L.B.: The stable marriage problem. Commun. ACM 14(7), 486–490 (1971)

    Article  MathSciNet  Google Scholar 

  13. Munera, D., Diaz, D., Abreu, S., Rossi, F., Saraswat, V., Codognet, P.: Solving hard stable matching problems via local search and cooperative parallelization. In: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, pp. 1212–1218 (2015)

    Google Scholar 

  14. Nakamura, M., Onaga, K., Kyan, S., Silva, M.: Genetic algorithm for sex-fairstable marriage problem. In: 1995 IEEE International Symposium on Circuits and Systems, (ISCAS 1995), Seattle, WA , pp. 509–512, April 1995

    Google Scholar 

  15. Roth, A.E.: The evolution of the labor market for medical interns and residents: a case study in game theory. J. Polit. Econ. 92(6), 991–1016 (1984)

    Article  Google Scholar 

  16. Vien, N.A., Viet, N.H., Kim, H., Lee, S., Chung, T.: Ant colony based algorithm for stable marriage problem. In: Advances and Innovations in Systems, Computing Sciences and Software Engineering, pp. 457–461 (2007)

    Google Scholar 

  17. Viet, H.H., Trang, L.H., Lee, S.G., Chung, T.C.: An empirical local search for the stable marriage problem. In: Booth, R., Zhang, M.-L. (eds.) PRICAI 2016. LNCS (LNAI), vol. 9810, pp. 556–564. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42911-3_46

    Chapter  Google Scholar 

  18. Zavidovique, B., Suvonvorn, N., Seetharaman, G.: A novel representation and algorithms for (quasi) stable marriages. In: 2005 Proceedings of the Second International Conference on Informatics in Control, Automation and Robotics (ICINCO), Barcelona, Spain, pp. 63–70, September 2005

    Google Scholar 

Download references

Acknowledgment

This research is funded by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 102.01-2017.09.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Le Hong Trang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Viet, H.H., Uyen, N.T., My, P.T., Cao, S.T., Trang, L.H. (2019). A Max-Min Conflict Algorithm for the Stable Marriage Problem. In: Ohara, K., Bai, Q. (eds) Knowledge Management and Acquisition for Intelligent Systems. PKAW 2019. Lecture Notes in Computer Science(), vol 11669. Springer, Cham. https://doi.org/10.1007/978-3-030-30639-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30639-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30638-0

  • Online ISBN: 978-3-030-30639-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics