Abstract
Many methods have been proposed to automatically extend knowledge bases, but the vast majority of these methods focus on finding plausible missing facts, and knowledge graph triples in particular. In this paper, we instead focus on automatically extending ontologies that are encoded as a set of existential rules. In particular, our aim is to find rules that are plausible, but which cannot be deduced from the given ontology. To this end, we propose a graph-based representation of rule bases. Nodes of the considered graphs correspond to predicates, and they are annotated with vectors encoding our prior knowledge about the meaning of these predicates. The vectors may be obtained from external resources such as word embeddings or they could be estimated from the rule base itself. Edges connect predicates that co-occur in the same rule and their annotations reflect the types of rules in which the predicates co-occur. We then use a neural network model based on Graph Convolutional Networks (GCNs) to refine the initial vector representation of the predicates, to obtain a representation which is predictive of which rules are plausible. We present experimental results that demonstrate the strong performance of this method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
Implementation and data are available at https://github.com/bzdt/GCN-based-Ontology-Completion.git.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
References
Alfarone, D., Davis, J.: Unsupervised learning of an IS-A taxonomy from a limited domain-specific corpus. In: Proceedings IJCAI, pp. 1434–1441 (2015)
Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press, New York (2003)
Baader, F., Ganter, B., Sertkaya, B., Sattler, U.: Completing description logic knowledge bases using formal concept analysis. In: Proceedings IJCAI, vol. 7, pp. 230–235 (2007)
Baget, J., Leclère, M., Mugnier, M., Salvat, E.: On rules with existential variables: walking the decidability line. Artif. Intell. 175(9–10), 1620–1654 (2011). https://doi.org/10.1016/j.artint.2011.03.002
Beltagy, I., Chau, C., Boleda, G., Garrette, D., Erk, K., Mooney, R.: Montague meets Markov: deep semantics with probabilistic logical form. In: Proceedings of *SEM13, pp. 11–21 (2013)
Bloehdorn, S., Sure, Y.: Kernel methods for mining instance data in ontologies. In: Aberer, K., et al. (eds.) ASWC/ISWC -2007. LNCS, vol. 4825, pp. 58–71. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76298-0_5
Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: Proceedings NIPS, pp. 2787–2795 (2013)
Bouraoui, Z., Jameel, S., Schockaert, S.: Inductive reasoning about ontologies using conceptual spaces. In: Proceedings AAAI, pp. 4364–4370 (2017)
Bouraoui, Z., Schockaert, S.: Automated rule base completion as Bayesian concept induction. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, Honolulu, Hawaii, USA, 27 January–1 February (2019)
Bühmann, L., Lehmann, J., Westphal, P.: Dl-learner–a framework for inductive learning on the semantic web. J. Web Semant. 39, 15–24 (2016)
Camacho-Collados, J., Pilehvar, M.T., Navigli, R.: Nasari: integrating explicit knowledge and corpus statistics for a multilingual representation of concepts and entities. Artif. Intell. 240, 36–64 (2016)
Duvenaud, D.K., et al.: Convolutional networks on graphs for learning molecular fingerprints. In: Advances in Neural Information Processing Systems, pp. 2224–2232 (2015)
Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E.: Neural message passing for quantum chemistry. In: Proceedings of the 34th International Conference on Machine Learning, vol. 70, pp. 1263–1272. JMLR. org (2017)
Grover, A., Zweig, A., Ermon, S.: Graphite: iterative generative modeling of graphs. arXiv preprint arXiv:1803.10459 (2018)
Guo, S., Wang, Q., Wang, L., Wang, B., Guo, L.: Knowledge graph embedding with iterative guidance from soft rules. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)
Hamaguchi, T., Oiwa, H., Shimbo, M., Matsumoto, Y.: Knowledge transfer for out-of-knowledge-base entities: a graph neural network approach. arXiv preprint arXiv:1706.05674 (2017)
Hill, F., Cho, K., Korhonen, A.: Learning distributed representations of sentences from unlabelled data. In: Proceedings NAACL-HLT, pp. 1367–1377 (2016)
Horrocks, I.: Ontologies and the semantic web. Commun. ACM 51(12), 58–67 (2008). https://doi.org/10.1145/1409360.1409377
Jameel, S., Bouraoui, Z., Schockaert, S.: MEmbER: max-margin based embeddings for entity retrieval. In: Proceedings SIGIR, pp. 783–792 (2017)
Jameel, S., Schockaert, S.: Entity embeddings with conceptual subspaces as a basis for plausible reasoning. In: ECAI, pp. 1353–1361 (2016)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)
Kok, S., Domingos, P.: Statistical predicate invention. In: Proceedings ICML, pp. 433–440 (2007)
Kozareva, Z., Hovy, E.: A semi-supervised method to learn and construct taxonomies using the web. In: Proceedings EMNLP, pp. 1110–1118 (2010)
Lao, N., Mitchell, T., Cohen, W.W.: Random walk inference and learning in a large scale knowledge base. In: Proceedings EMNLP, pp. 529–539 (2011)
Lin, Y., Liu, Z., Luan, H., Sun, M., Rao, S., Liu, S.: Modeling relation paths for representation learning of knowledge bases. In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pp. 705–714 (2015)
Medina, J., Ojeda-Aciego, M., Vojtáš, P.: Similarity-based unification: a multi-adjoint approach. Fuzzy Sets Syst. 146, 43–62 (2004)
Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Proceedings of the 27th Annual Conference on Neural Information Processing Systems, pp. 3111–3119 (2013)
Mintz, M., Bills, S., Snow, R., Jurafsky, D.: Distant supervision for relation extraction without labeled data. In: Proceedings ACL, pp. 1003–1011 (2009)
Muggleton, S.H., Lin, D., Tamaddoni-Nezhad, A.: Meta-interpretive learning of higher-order dyadic datalog: predicate invention revisited. Mach. Learn. 100(1), 49–73 (2015)
Neelakantan, A., Chang, M.: Inferring missing entity type instances for knowledge base completion: new dataset and methods. In: Proceedings NAACL, pp. 515–525 (2015)
Qian, W., Fu, C., Zhu, Y., Cai, D., He, X.: Translating embeddings for knowledge graph completion with relation attention mechanism. In: IJCAI, pp. 4286–4292 (2018)
Riedel, S., Yao, L., McCallum, A.: Modeling relations and their mentions without labeled text. In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML PKDD 2010. LNCS, vol. 6323, pp. 148–163. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15939-8_10
Riedel, S., Yao, L., McCallum, A., Marlin, B.M.: Relation extraction with matrix factorization and universal schemas. In: Proceedings HLT-NAACL, pp. 74–84 (2013)
Rocktäschel, T., Riedel, S.: Learning knowledge base inference with neural theorem provers. In: Proceedings of the 5th Workshop on Automated Knowledge Base Construction, pp. 45–50 (2016)
Rocktäschel, T., Riedel, S.: End-to-end differentiable proving. In: Proceedings NIPS, pp. 3791–3803 (2017)
Schlichtkrull, M., Kipf, T.N., Bloem, P., van den Berg, R., Titov, I., Welling, M.: Modeling relational data with graph convolutional networks. In: Gangemi, A., et al. (eds.) ESWC 2018. LNCS, vol. 10843, pp. 593–607. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93417-4_38
Schockaert, S., Prade, H.: Interpolative and extrapolative reasoning in propositional theories using qualitative knowledge about conceptual spaces. Artif. Intell. 202, 86–131 (2013)
Šourek, G., Manandhar, S., Železný, F., Schockaert, S., Kuželka, O.: Learning predictive categories using lifted relational neural networks. In: Cussens, J., Russo, A. (eds.) ILP 2016. LNCS, vol. 10326, pp. 108–119. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63342-8_9
Speer, R., Havasi, C., Lieberman, H.: AnalogySpace: reducing the dimensionality of common sense knowledge. In: Proceedings AAAI, pp. 548–553 (2008)
Toutanova, K., Chen, D., Pantel, P., Poon, H., Choudhury, P., Gamon, M.: Representing text for joint embedding of text and knowledge bases. In: Proceedings of EMNLP-15, pp. 1499–1509 (2015)
Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., Bouchard, G.: Complex embeddings for simple link prediction. In: Proceedings ICML, pp. 2071–2080 (2016)
Völker, J., Niepert, M.: Statistical schema induction. In: Antoniou, G., et al. (eds.) ESWC 2011. LNCS, vol. 6643, pp. 124–138. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21034-1_9
West, R., Gabrilovich, E., Murphy, K., Sun, S., Gupta, R., Lin, D.: Knowledge base completion via search-based question answering. In: Proceedings WWW, pp. 515–526 (2014)
Xiao, H., Huang, M., Meng, L., Zhu, X.: SSP: semantic space projection for knowledge graph embedding with text descriptions. In: Proceedings AAAI, vol. 17, pp. 3104–3110 (2017)
Xie, R., Liu, Z., Jia, J., Luan, H., Sun, M.: Representation learning of knowledge graphs with entity descriptions. In: Proceedings of AAAI, pp. 2659–2665 (2016)
Yang, B., Yih, W., He, X., Gao, J., Deng, L.: Embedding entities and relations for learning and inference in knowledge bases. In: Proceedings of ICLR-15 (2015)
Zhong, H., Zhang, J., Wang, Z., Wan, H., Chen, Z.: Aligning knowledge and text embeddings by entity descriptions. In: EMNLP, pp. 267–272 (2015)
Acknowledgements
Steven Schockaert was supported by ERC Starting Grant 637277. Zied Bouraoui was supported by CNRS PEPS INS2I MODERN.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Li, N., Bouraoui, Z., Schockaert, S. (2019). Ontology Completion Using Graph Convolutional Networks. In: Ghidini, C., et al. The Semantic Web – ISWC 2019. ISWC 2019. Lecture Notes in Computer Science(), vol 11778. Springer, Cham. https://doi.org/10.1007/978-3-030-30793-6_25
Download citation
DOI: https://doi.org/10.1007/978-3-030-30793-6_25
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-30792-9
Online ISBN: 978-3-030-30793-6
eBook Packages: Computer ScienceComputer Science (R0)