Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Emotion Recognition to Improve e-Healthcare Systems in Smart Cities

  • Conference paper
  • First Online:
Research & Innovation Forum 2019 (RIIFORUM 2019)

Abstract

The ability to detect and control patients’ pain is a fundamental objective within any medical service. Nowadays, the evaluation of pain in patients depends mainly on the continuous monitoring of the medical staff and, where applicable, on people from the immediate environment of the patient. However, the detection of pain becomes a priority situation when the patient is unable to express verbally his/her experience of pain, as is the case of patients under sedation or babies, among others. Therefore, it is necessary to provide alternative methods for its evaluation and detection. As a result, the implementation of a system capable of determining whether a person suffers pain at any level would mean an increase in the quality of life of patients, enabling a more personalized adaptation of palliative treatments. Among other elements, it is possible to consider facial expressions as a valid indicator of a person’s degree of pain. Consequently, this paper presents the design of a remote patient monitoring system that uses an automatic emotion detection system by means of image analysis. For this purpose, a system based on texture descriptors is used together with Support Vector Machines (SVM) for their classification. The results obtained with different databases provide accuracies around 90%, which proves the validity of our proposal. In this way, the e-health systems of a Smart City will be improved by introducing a system as the one proposed here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. IASP: IASP Terminology. https://www.iasp-pain.org/Education/Content.aspx?ItemNumber=1698, last accessed 2019/01/14

  2. Ranstad: e-health, cómo la tecnología mejora nuestra salud. https://www.randstad.es/tendencias360/e-health-como-la-tecnologia-mejora-nuestra-salud/, last accessed 2019/01/22

  3. Riddell, R.R.P., Craig, K.D.: Judgments of infant pain: the impact of caregiver identity and infant age. J. Pediatr. Psychol. 32(5), 501–511 (2007)

    Article  Google Scholar 

  4. The Statistics Portal: Global retail sales of products specified for babies and children from 2007 to 2016, by category (in billion U.S. dollars), https://www.statista.com/statistics/618389/global-retail-sales-baby-childrens-products/, last accessed 2019/01/18

  5. The Statistics Portal, Baby care products market size worldwide from 2018 to 2026 (in billion U.S. dollars), https://www.statista.com/statistics/258435/revenue-of-the-baby-care-products-market-worldwide/, last accessed 2019/01/18

  6. Google Trends: Baby Monitor. https://trends.google.es/trends/explore?date=all&q=baby%20monitor, last accessed 2019/01/18

  7. Roy, S.D., Bhowmik, M.K., Saha, P., Ghosh, A.K.: An approach for automatic pain detection through facial expression. Procedia Comput. Sci. 84, 99–106 (2016)

    Article  Google Scholar 

  8. Lucey, P., Cohn, J., Matthews, I., Lucey, S., Sridharan, S., Howlett, J., Prkachin, K.: Automatically detecting pain in video through facial action units. IEEE Trans. Syst. Man Cybern. B Cybern. 41(3), 664–674 (2011)

    Article  Google Scholar 

  9. Preciado, A.: Trabajo Fin de Grado: Valoración del dolor en neonatos: Propuesta de un modelo de registro en la unidad de neonatología del complejo hospitalario de Navarra. Universidad Pública de Navarra (2013)

    Google Scholar 

  10. Romero, S.: s.f. Muy interesante, Los bebés sienten dolor como los adultos, https://www.muyinteresante.es/salud/articulo/los-bebes-sienten-el-dolor-como-los-adultos-341429608053, last accessed 2019/01/20

  11. Pietikäinen, M.: Local binary pattern. Scholarpedia 5(3), 9775 (2010). http://www.scholarpedia.org/article/Local_Binary_Patterns, last accessed 2019/01/10

    Article  Google Scholar 

  12. Lindahl, T.: Master thesis: Study of local binary pattern. Linköping University (2007)

    Google Scholar 

  13. Suárez, E.J.C.: Tutorial sobre máquinas de vectores soporte (sVM). ETS de Ingeniería Informática, Universidad Nacional de Educación a Distancia (UNED), Dpto. de Inteligencia Artificial (2014)

    Google Scholar 

  14. Nanni, L., Lumini, A., Brahnam, S.: Local binary patterns variants as texture descriptors for medical image analysis. Artif. Intell. Med. 49(2), 117–125 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been partially supported by the Spanish Research Agency (AEI) and the European Regional Development Fund (FEDER) under project CloudDriver4Industry TIN2017-89266-R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco A. Pujol .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pujol, F.A., Mora, H., Martínez, A. (2019). Emotion Recognition to Improve e-Healthcare Systems in Smart Cities. In: Visvizi, A., Lytras, M. (eds) Research & Innovation Forum 2019. RIIFORUM 2019. Springer Proceedings in Complexity. Springer, Cham. https://doi.org/10.1007/978-3-030-30809-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30809-4_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30808-7

  • Online ISBN: 978-3-030-30809-4

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics