Abstract
The aim of this study is to propose an innovative methodology to classify argumentative stances in a monologic argumentative context. Particularly, the proposed approach shows that Tree Kernels can be used in combination with traditional textual vectorization to discriminate between different stances of opposition without the need of extracting highly engineered features. This can be useful in many Argument Mining sub-tasks. In particular, this work explores the possibility of classifying opposition stances by training multiple classifiers to reach different degrees of granularity. Noticeably, discriminating support and opposition stances can be particularly useful when trying to detect Argument Schemes, one of the most challenging sub-task in the Argument Mining pipeline. In this sense, the approach can be also considered as an attempt to classify stances of opposition that are related to specific Argument Schemes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Athan, T., Governatori, G., Palmirani, M., Paschke, A., Wyner, A.: LegalRuleML: design principles and foundations. In: Faber, W., Paschke, A. (eds.) Reasoning Web 2015. LNCS, vol. 9203, pp. 151–188. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21768-0_6
Cabrio, E., Villata, S.: Five years of argument mining: a data-driven analysis. In: IJCAI, pp. 5427–5433 (2018)
Croce, D., Moschitti, A., Basili, R.: Structured lexical similarity via convolution kernels on dependency trees. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing, pp. 1034–1046. Association for Computational Linguistics (2011)
Feng, V.W., Hirst, G.: Classifying arguments by scheme. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, pp. 987–996 (2011)
Filice, S., Castellucci, G., Croce, D., Basili, R.: KeLP: a kernel-based learning platform for natural language processing. In: Proceedings of ACL-IJCNLP 2015 System Demonstrations, pp. 19–24 (2015)
Filice, S., Moschitti, A.: Learning pairwise patterns in community question answering. Intelligenza Artificiale 12(2), 49–65 (2018)
Hovy, D., et al.: Identifying metaphorical word use with tree kernels. In: Proceedings of the First Workshop on Metaphor in NLP, pp. 52–57 (2013)
Lawrence, J., Reed, C.: Argument mining using argumentation scheme structures. In: COMMA, pp. 379–390 (2016)
Liga, D.: Argumentative evidences classification and argument scheme detection using tree kernels. In: Proceedings of the 6th Workshop on Argument Mining, pp. 92–97 (2019)
Lippi, M., Lagioia, F., Contissa, G., Sartor, G., Torroni, P.: Claim detection in judgments of the EU court of justice. In: Pagallo, U., Palmirani, M., Casanovas, P., Sartor, G., Villata, S. (eds.) AICOL 2015-2017. LNCS (LNAI), vol. 10791, pp. 513–527. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00178-0_35
Lippi, M., et al.: Claudette: an automated detector of potentially unfair clauses in online terms of service. Artif. Intell. Law 1, 1–23 (2018)
Lippi, M., Torroni, P.: Argument mining: a machine learning perspective. In: Black, E., Modgil, S., Oren, N. (eds.) TAFA 2015. LNCS (LNAI), vol. 9524, pp. 163–176. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-28460-6_10
Lippi, M., Torroni, P.: Margot: a web server for argumentation mining. Expert Syst. Appl. 65, 292–303 (2016)
Mayer, T., Cabrio, E., Lippi, M., Torroni, P., Villata, S.: Argument mining on clinical trials. In: Computational Models of Argument: Proceedings of COMMA 2018, vol. 305, p. 137 (2018)
Moschitti, A.: Efficient convolution kernels for dependency and constituent syntactic trees. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp. 318–329. Springer, Heidelberg (2006). https://doi.org/10.1007/11871842_32
Moschitti, A., Pighin, D., Basili, R.: Tree kernels for semantic role labeling. Comput. Linguist. 34(2), 193–224 (2008)
Nguyen, T.V.T., Moschitti, A., Riccardi, G.: Convolution kernels on constituent, dependency and sequential structures for relation extraction. In: Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing: Volume 3, pp. 1378–1387. Association for Computational Linguistics (2009)
Rooney, N., Wang, H., Browne, F.: Applying kernel methods to argumentation mining. In: Twenty-Fifth International FLAIRS Conference (2012)
Shawe-Taylor, J., Cristianini, N., et al.: Kernel Methods for Pattern Analysis. Cambridge University Press, Cambridge (2004)
Walton, D.: The basic slippery slope argument. Informal Logic 35(3), 273–311 (2015)
Walton, D., Macagno, F.: A classification system for argumentation schemes. Argument Comput. 6(3), 219–245 (2015)
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Liga, D., Palmirani, M. (2019). Detecting “Slippery Slope” and Other Argumentative Stances of Opposition Using Tree Kernels in Monologic Discourse. In: Fodor, P., Montali, M., Calvanese, D., Roman, D. (eds) Rules and Reasoning. RuleML+RR 2019. Lecture Notes in Computer Science(), vol 11784. Springer, Cham. https://doi.org/10.1007/978-3-030-31095-0_13
Download citation
DOI: https://doi.org/10.1007/978-3-030-31095-0_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-31094-3
Online ISBN: 978-3-030-31095-0
eBook Packages: Computer ScienceComputer Science (R0)