Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Detecting “Slippery Slope” and Other Argumentative Stances of Opposition Using Tree Kernels in Monologic Discourse

  • Conference paper
  • First Online:
Rules and Reasoning (RuleML+RR 2019)

Abstract

The aim of this study is to propose an innovative methodology to classify argumentative stances in a monologic argumentative context. Particularly, the proposed approach shows that Tree Kernels can be used in combination with traditional textual vectorization to discriminate between different stances of opposition without the need of extracting highly engineered features. This can be useful in many Argument Mining sub-tasks. In particular, this work explores the possibility of classifying opposition stances by training multiple classifiers to reach different degrees of granularity. Noticeably, discriminating support and opposition stances can be particularly useful when trying to detect Argument Schemes, one of the most challenging sub-task in the Argument Mining pipeline. In this sense, the approach can be also considered as an attempt to classify stances of opposition that are related to specific Argument Schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Athan, T., Governatori, G., Palmirani, M., Paschke, A., Wyner, A.: LegalRuleML: design principles and foundations. In: Faber, W., Paschke, A. (eds.) Reasoning Web 2015. LNCS, vol. 9203, pp. 151–188. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21768-0_6

    Chapter  Google Scholar 

  2. Cabrio, E., Villata, S.: Five years of argument mining: a data-driven analysis. In: IJCAI, pp. 5427–5433 (2018)

    Google Scholar 

  3. Croce, D., Moschitti, A., Basili, R.: Structured lexical similarity via convolution kernels on dependency trees. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing, pp. 1034–1046. Association for Computational Linguistics (2011)

    Google Scholar 

  4. Feng, V.W., Hirst, G.: Classifying arguments by scheme. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, pp. 987–996 (2011)

    Google Scholar 

  5. Filice, S., Castellucci, G., Croce, D., Basili, R.: KeLP: a kernel-based learning platform for natural language processing. In: Proceedings of ACL-IJCNLP 2015 System Demonstrations, pp. 19–24 (2015)

    Google Scholar 

  6. Filice, S., Moschitti, A.: Learning pairwise patterns in community question answering. Intelligenza Artificiale 12(2), 49–65 (2018)

    Article  Google Scholar 

  7. Hovy, D., et al.: Identifying metaphorical word use with tree kernels. In: Proceedings of the First Workshop on Metaphor in NLP, pp. 52–57 (2013)

    Google Scholar 

  8. Lawrence, J., Reed, C.: Argument mining using argumentation scheme structures. In: COMMA, pp. 379–390 (2016)

    Google Scholar 

  9. Liga, D.: Argumentative evidences classification and argument scheme detection using tree kernels. In: Proceedings of the 6th Workshop on Argument Mining, pp. 92–97 (2019)

    Google Scholar 

  10. Lippi, M., Lagioia, F., Contissa, G., Sartor, G., Torroni, P.: Claim detection in judgments of the EU court of justice. In: Pagallo, U., Palmirani, M., Casanovas, P., Sartor, G., Villata, S. (eds.) AICOL 2015-2017. LNCS (LNAI), vol. 10791, pp. 513–527. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00178-0_35

    Chapter  Google Scholar 

  11. Lippi, M., et al.: Claudette: an automated detector of potentially unfair clauses in online terms of service. Artif. Intell. Law 1, 1–23 (2018)

    Google Scholar 

  12. Lippi, M., Torroni, P.: Argument mining: a machine learning perspective. In: Black, E., Modgil, S., Oren, N. (eds.) TAFA 2015. LNCS (LNAI), vol. 9524, pp. 163–176. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-28460-6_10

    Chapter  Google Scholar 

  13. Lippi, M., Torroni, P.: Margot: a web server for argumentation mining. Expert Syst. Appl. 65, 292–303 (2016)

    Article  Google Scholar 

  14. Mayer, T., Cabrio, E., Lippi, M., Torroni, P., Villata, S.: Argument mining on clinical trials. In: Computational Models of Argument: Proceedings of COMMA 2018, vol. 305, p. 137 (2018)

    Google Scholar 

  15. Moschitti, A.: Efficient convolution kernels for dependency and constituent syntactic trees. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp. 318–329. Springer, Heidelberg (2006). https://doi.org/10.1007/11871842_32

    Chapter  Google Scholar 

  16. Moschitti, A., Pighin, D., Basili, R.: Tree kernels for semantic role labeling. Comput. Linguist. 34(2), 193–224 (2008)

    Article  MathSciNet  Google Scholar 

  17. Nguyen, T.V.T., Moschitti, A., Riccardi, G.: Convolution kernels on constituent, dependency and sequential structures for relation extraction. In: Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing: Volume 3, pp. 1378–1387. Association for Computational Linguistics (2009)

    Google Scholar 

  18. Rooney, N., Wang, H., Browne, F.: Applying kernel methods to argumentation mining. In: Twenty-Fifth International FLAIRS Conference (2012)

    Google Scholar 

  19. Shawe-Taylor, J., Cristianini, N., et al.: Kernel Methods for Pattern Analysis. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  20. Walton, D.: The basic slippery slope argument. Informal Logic 35(3), 273–311 (2015)

    Article  Google Scholar 

  21. Walton, D., Macagno, F.: A classification system for argumentation schemes. Argument Comput. 6(3), 219–245 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Davide Liga or Monica Palmirani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liga, D., Palmirani, M. (2019). Detecting “Slippery Slope” and Other Argumentative Stances of Opposition Using Tree Kernels in Monologic Discourse. In: Fodor, P., Montali, M., Calvanese, D., Roman, D. (eds) Rules and Reasoning. RuleML+RR 2019. Lecture Notes in Computer Science(), vol 11784. Springer, Cham. https://doi.org/10.1007/978-3-030-31095-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31095-0_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31094-3

  • Online ISBN: 978-3-030-31095-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics