Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Interactive Elicitation of a Majority Rule Sorting Model with Maximum Margin Optimization

  • Conference paper
  • First Online:
Algorithmic Decision Theory (ADT 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11834))

Included in the following conference series:

Abstract

We consider the problem of eliciting a model for ordered classification. In particular, we consider Majority Rule Sorting (MR-sort), a popular model for multiple criteria decision analysis, based on pairwise comparisons between alternatives and idealized profiles representing the “limit” of each category.

Our interactive elicitation protocol asks, at each step, the decision maker to classify an alternative; these assignments are used as training set for learning the model. Since we wish to limit the cognitive burden of elicitation, we aim at asking informative questions in order to find a good approximation of the optimal classification in a limited number of elicitation steps. We propose efficient strategies for computing the next question and show how its computation can be formulated as a linear program. We present experimental results showing the effectiveness of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    This step is of course only to be performed in simulations, in real use of the procedure the classification error will not be known.

  2. 2.

    All experiments were run on a 2.9 GHz Intel, Core i7 and 16 Giga of RAM.

References

  1. Ah-Pine, J., Mayag, B., Rolland, A.: Identification of a 2-additive bi-capacity by using mathematical programming. In: Perny, P., Pirlot, M., Tsoukiàs, A. (eds.) ADT 2013. LNCS (LNAI), vol. 8176, pp. 15–29. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41575-3_2

    Chapter  Google Scholar 

  2. Benabbou, N., Perny, P., Viappiani, P.: A regret-based preference elicitation approach for sorting with multicriteria reference profiles. In: From Multicriteria Decision Making to Preference Learning (DA2PL 2016) (2016)

    Google Scholar 

  3. Benabbou, N., Perny, P., Viappiani, P.: Incremental elicitation of choquet capacities for multicriteria choice, ranking and sorting problems. Artif. Intell. 246 , 152–180 (2017)

    Article  MathSciNet  Google Scholar 

  4. Boutilier, C.: Computational decision support: regret-based models for optimization and preference elicitation. In: Crowley, P.H. Zentall, T.R. (eds.) Comparative Decision Making: Analysis and Support Across Disciplines and Applications, pp. 423–453 (2013)

    Chapter  Google Scholar 

  5. Bouyssou, D., Marchant, T.: An axiomatic approach to noncompensatory sorting methods in MCDM, II: more than two categories. Eur. J. Oper. Res. 178 (1), 246–276 (2007)

    Article  Google Scholar 

  6. Conitzer, V., Sandholm, T.: Vote elicitation: complexity and strategy-proofness. In: AAAI/IAAI, pp. 392–397 (2002)

    Google Scholar 

  7. Domshlak, C., Hüllermeier, E., Kaci, S., Prade, H.: Preferences in AI: an overview (2011)

    Article  MathSciNet  Google Scholar 

  8. Dua, D., Graff, C.: UCI machine learning repository (2017)

    Google Scholar 

  9. Frank, E., Hall, M.: A simple approach to ordinal classification. In: De Raedt, L., Flach, P. (eds.) ECML 2001. LNCS (LNAI), vol. 2167, pp. 145–156. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44795-4_13

    Chapter  Google Scholar 

  10. Fürnkranz, J., Hüllermeier, E.: Preference Learning, 1st edn. Springer, Boston (2010). https://doi.org/10.1007/978-0-387-30164-8

    Book  MATH  Google Scholar 

  11. Fürnkranz, J., Hüllermeier, E., Mencía, E.L., Brinker, K.: Multilabel classification via calibrated label ranking. Mach. Learn. 73 (2), 133–153 (2008)

    Article  Google Scholar 

  12. Gajos, K., Weld, D.S.: Preference elicitation for interface optimization. In: Proceedings of UIST, pp. 173–182. ACM (2005)

    Google Scholar 

  13. Greco, S., Mousseau, V., Slowinski, R.: Ordinal regression revisited: multiple criteria ranking using a set of additive value functions. Eur. J. Oper. Res. 191 (2), 416–436 (2008)

    Article  MathSciNet  Google Scholar 

  14. Jacquet-Lagrèze, E., Siskos, Y.: Assessing a set of additive utility functions for multicriteria decision making: the UTA method. Eur. J. Oper. Res. 10 , 151–164 (1982)

    Article  Google Scholar 

  15. Leroy, A., Mousseau, V., Pirlot, M.: Learning the parameters of a multiple criteria sorting method. In: Brafman, R.I., Roberts, F.S., Tsoukiàs, A. (eds.) ADT 2011. LNCS (LNAI), vol. 6992, pp. 219–233. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24873-3_17

    Chapter  Google Scholar 

  16. Mousseau, V., Slowinski, R., Zielniewicz, P.: A user-oriented implementation of the ELECTRE-TRI method integrating preference elicitation support. Comput. OR 27 (7–8), 757–777 (2000)

    Article  Google Scholar 

  17. Murphy, K.P.: Machine Learning: A Probabilistic Perspective. The MIT Press, Cambridge (2012)

    MATH  Google Scholar 

  18. Olteanu, A.L.: Strategies for the incremental inference of majority-rule sorting models. In: DA2PL 2018: from Multiple Criteria Decision Aid to Preference Learning, Poznan, Poland, November 2018

    Google Scholar 

  19. Roy, B.: The outranking approach and the foundations of electre methods. In: Bana e Costa, C.A. (ed.) Readings in Multiple Criteria Decision Aid, pp. 155–183. Springer, Heidelberg (1990). https://doi.org/10.1007/978-3-642-75935-2_8

    Chapter  Google Scholar 

  20. Sobrie, O., Mousseau, V., Pirlot, M.: Learning a majority rule model from large sets of assignment examples. In: Perny, P., Pirlot, M., Tsoukiàs, A. (eds.) ADT 2013. LNCS (LNAI), vol. 8176, pp. 336–350. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41575-3_26

    Chapter  Google Scholar 

  21. Sobrie, O., Mousseau, V., Pirlot, M.: Learning the parameters of a non compensatory sorting model. In: Walsh, T. (ed.) ADT 2015. LNCS (LNAI), vol. 9346, pp. 153–170. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23114-3_10

    Chapter  Google Scholar 

  22. Sobrie, O., Mousseau, V., Pirlot, M.: A population-based algorithm for learning a majority rule sorting model with coalitional veto. In: Trautmann, H., et al. (eds.) EMO 2017. LNCS, vol. 10173, pp. 575–589. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54157-0_39

    Chapter  Google Scholar 

  23. Sobrie, O., Mousseau, V., Pirlot, M.: Learning monotone preferences using a majority rule sorting model. Int. Trans. Oper. Res. 26 (5), 1786–1809 (2019)

    Article  MathSciNet  Google Scholar 

  24. Soufiani, H.A., Parkes, D.C., Xia, L.: Preference elicitation for general random utility models. arXiv preprint arXiv:1309.6864 (2013)

  25. Teso, S., Passerini, A., Viappiani, P.: Constructive preference elicitation by setwise max-margin learning. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI 2016, New York, NY, USA, 9–15 July 2016, pp. 2067–2073 (2016)

    Google Scholar 

  26. Teso, S., Passerini, A., Viappiani, P.: Constructive preference elicitation for multiple users with setwise max-margin. In: Rothe, J. (ed.) ADT 2017. LNCS (LNAI), vol. 10576, pp. 3–17. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67504-6_1

    Chapter  Google Scholar 

  27. Zhao, Z., et al.: A cost-effective framework for preference elicitation and aggregation. arXiv preprint arXiv:1805.05287 (2018)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ons Nefla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nefla, O., Öztürk, M., Viappiani, P., Brigui-Chtioui, I. (2019). Interactive Elicitation of a Majority Rule Sorting Model with Maximum Margin Optimization. In: Pekeč, S., Venable, K.B. (eds) Algorithmic Decision Theory. ADT 2019. Lecture Notes in Computer Science(), vol 11834. Springer, Cham. https://doi.org/10.1007/978-3-030-31489-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31489-7_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31488-0

  • Online ISBN: 978-3-030-31489-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics