Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Ensemble of 3D CNN Regressors with Data Fusion for Fluid Intelligence Prediction

  • Conference paper
  • First Online:
Adolescent Brain Cognitive Development Neurocognitive Prediction (ABCD-NP 2019)

Abstract

In this work, we aimed at predicting children’s fluid intelligence scores based on structural T1-weighted MR images from the largest long-term study of brain development and child health. The target variable was regressed on a data collection site, sociodemographic variables, and brain volume, thus being independent to the potentially informative factors, which were not directly related to the brain functioning. We investigated both feature extraction and deep learning approaches as well as different deep CNN architectures and their ensembles. We proposed an advanced architecture of VoxCNNs ensemble, which yields MSE (92.838) on a blind test.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://sibis.sri.com/abcd-np-challenge/.

References

  1. Carroll, J.B.: Human Cognitive Abilities: A Survey of Factor-Analytic Studies. Cambridge University Press, Cambridge (1993)

    Book  Google Scholar 

  2. RobertWCox: AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. In: Computers and Biomedical Research, vol. 29, no. 3, pp. 162–173 (1996)

    Google Scholar 

  3. Smith, S.M.: Fast robust automated brain extraction. Hum. Brain Mapp. 17(3), 143–155 (2002)

    Article  Google Scholar 

  4. Avants, B.B., Tustison, N., Song, G.: Advanced normalization tools (ANTS). Insight j 2, 1–35 (2009)

    Google Scholar 

  5. Rohlfing, T., et al.: The SRI24 multichannel atlas of normal adult human brain structure. Hum. Brain Mapp. 31(5), 798–819 (2010)

    Article  Google Scholar 

  6. Sadananthan, S.A., et al.: Skull stripping using graph cuts. NeuroImage 49(1), 225–239 (2010)

    Article  Google Scholar 

  7. Avants, B.B., et al.: An open source multivariate framework for n-tissue segmentation with evaluation on public data. Neuroinformatics 9(4), 381–400 (2011)

    Article  Google Scholar 

  8. Iglesias, J.E., et al.: Robust brain extraction across datasets and comparison with publicly available methods. IEEE Trans. Med. Imaging 30(9), 1617–1634 (2011)

    Article  Google Scholar 

  9. Burnaev, E.V., Prikhod’ko, P.V.: On a method for constructing ensembles of regression models. Autom. Remote Control 74(10), 1630–1644 (2013)

    Article  MathSciNet  Google Scholar 

  10. Burnaev, E., Vovk, V.: Efficiency of conformalized ridge regression. In: Balcan, M.F., Feldman, V., Szepesvari, C. (eds.) Proceedings of the 27th Conference on Learning Theory. Proceedings of Machine Learning Research, PMLR, Barcelona, Spain, 13–15 Jun 2014, vol. 35, pp. 605–622 (2014)

    Google Scholar 

  11. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  12. Brown, S.A., et al.: The national consortium on alcohol and neurodevelopment in adolescence (NCANDA): a multisite study of adolescent development and substance use. J. Stud. Alcohol Drugs 76(6), 895–908 (2015)

    Article  Google Scholar 

  13. Burnaev, E., Zaytsev, A.: Surrogate modeling of multifidelity data for large samples. J. Commun. Technol. Electron. 60(12), 1348–1355 (2015)

    Article  Google Scholar 

  14. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

    Google Scholar 

  15. Tompson, J., et al.: Efficient object localization using convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 648–656 (2015)

    Google Scholar 

  16. Burnaev, E., Erofeev, P.: The influence of parameter initialization on the training time and accuracy of a nonlinear regression model. J. Commun. Technol. Electron. 61(6), 646–660 (2016). ISSN 1555-6557

    Article  Google Scholar 

  17. Burnaev, E., Nazarov, I.: Conformalized Kernel ridge regression. In: 2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 45–52 (2016)

    Google Scholar 

  18. Canziani, A., Paszke, A., Culurciello, E.: An analysis of deep neural network models for practical applications. arXiv preprint arXiv:1605.07678 (2016)

  19. Goetz, M., et al.: DALSA: domain adaptation for supervised learning from sparsely annotated MR images. IEEE Trans. Med. Imaging 35(1), 184–196 (2016)

    Article  Google Scholar 

  20. He, K., et al.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on computer vision and pattern recognition, pp. 770–778 (2016)

    Google Scholar 

  21. Hosseini-Asl, E., Gimel’farb, G., El-Baz, A.: Alzheimer’s disease diagnostics by a deeply supervised adaptable 3D convolutional network. arXiv preprint arXiv:1607.00556 (2016)

  22. Milletari, F., Navab, N., Ahmadi, S.-A.: V-net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 565–571. IEEE (2016)

    Google Scholar 

  23. Paul, E.J., et al.: Dissociable brain biomarkers of UID intelligence. NeuroImage 137, 201–211 (2016)

    Article  Google Scholar 

  24. Szegedy, C., et al.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)

    Google Scholar 

  25. Ghafoorian, M., et al.: Transfer learning for domain adaptation in MRI: application in brain lesion segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 516–524. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_59

    Chapter  Google Scholar 

  26. Hunyadi, B., et al.: Tensor decompositions and data fusion in epileptic electroencephalography and functional magnetic resonance imaging data. Wiley Interdiscip. Rev.: Data Min. Knowl. Discov. 7(1), e1197 (2017)

    Google Scholar 

  27. Korolev, S., et al.: Residual and plain convolutional neural networks for 3D brain MRI classification. In: IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), pp. 835–838. IEEE (2017)

    Google Scholar 

  28. Lu, H., et al.: When unsupervised domain adaptation meets tensor representations. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 599–608 (2017)

    Google Scholar 

  29. Pfefferbaum, A., et al.: Altered brain developmental trajectories in adolescents after initiating drinking. Am. J. Psychiatry 175(4), 370–380 (2017)

    Article  Google Scholar 

  30. Zaytsev, A., Burnaev, E.: Large scale variable fidelity surrogate modeling. Ann. Math. Artif. Intell. 81(1), 167–186 (2017). ISSN 1573-7470

    Article  MathSciNet  Google Scholar 

  31. Zaytsev, A., Burnaev, E.: Minimax approach to variable fidelity data interpolation. In: Singh, A., Zhu, J. (eds.) Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, Proceedings of Machine Learning Research, PMLR, Fort Lauderdale, FL, USA, 20–22 Apr 2017, vol. 54, pp. 652–661 (2017)

    Google Scholar 

  32. Chen, H., et al.: VoxResNet: deep voxelwise residual networks for brain segmentation from 3D MR images. NeuroImage 170, 446–455 (2018)

    Article  Google Scholar 

  33. Hagler, D.J., et al.: Image processing and analysis methods for the adolescent brain cognitive development study. bioRxiv, p. 457739 (2018)

    Google Scholar 

  34. Ivanov, S., et al.: Learning connectivity patterns via graph kernels for fMRI-based Depression Diagnostics. In: Proceedings of IEEE International Conference on Data Mining Workshops (ICDMW), pp. 308–314 (2018)

    Google Scholar 

  35. Kuleshov, A., Bernstein, A., Burnaev, E.: Conformal prediction in manifold learning. In: Gammerman, A., et al. (eds.) Proceedings of the Seventh Workshop on Conformal and Probabilistic Prediction and Applications, Proceedings of Machine Learning Research, PMLR, vol. 91. pp. 234–253 (2018)

    Google Scholar 

  36. Notchenko, A., Kapushev, Y., Burnaev, E.: Large-scale shape retrieval with sparse 3D convolutional neural networks. In: van der Aalst, W.M.P., et al. (eds.) AIST 2017. LNCS, vol. 10716, pp. 245–254. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73013-4_23

    Chapter  Google Scholar 

  37. Pominova, M., et al.: Voxelwise 3D convolutional and recurrent neural networks for epilepsy and depression diagnostics from structural and functional MRI Data. In: 2018 IEEE International Conference on Data Mining Workshops (ICDMW), pp. 299–307. IEEE (2018)

    Google Scholar 

  38. Sharaev, M., et al.: MRI-based diagnostics of depression concomitant with epilepsy: in search of the potential biomarkers. In: Proceedings of IEEE 5th International Conference on Data Science and Advanced Analytics, pp. 555–564 (2018)

    Google Scholar 

  39. Sharaev, M., et al.: Pattern recognition pipeline for neuroimaging data. In: Pancioni, L., Schwenker, F., Trentin, E. (eds.) ANNPR 2018. LNCS (LNAI), vol. 11081, pp. 306–319. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99978-4_24

    Chapter  Google Scholar 

  40. Zhu, M., Liu, B., Li, J.: Prediction of general fluid intelligence using cortical measurements and underlying genetic mechanisms. In: IOP Conference Series: Materials Science and Engineering, vol. 381, no. 1, p. 012186. IOP Publishing (2018)

    Google Scholar 

  41. Eckle, K., Schmidt-Hieber, J.: A comparison of deep networks with ReLU activation function and linear spline-type methods. Neural Netw. 110, 232–242 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the Russian Science Foundation under Grant 19-41-04109.

The considered problem was formulated in the scope of the Project “Machine Learning and Pattern Recognition for the development of diagnostic and clinical prognostic prediction tools in psychiatry, borderline mental disorders, and neurology”, granted by Skoltech Biomedical Initiative Program, Skolkovo Institute of Science and Technology, Moscow, Russia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ekaterina Kondrateva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pominova, M. et al. (2019). Ensemble of 3D CNN Regressors with Data Fusion for Fluid Intelligence Prediction. In: Pohl, K., Thompson, W., Adeli, E., Linguraru, M. (eds) Adolescent Brain Cognitive Development Neurocognitive Prediction. ABCD-NP 2019. Lecture Notes in Computer Science(), vol 11791. Springer, Cham. https://doi.org/10.1007/978-3-030-31901-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31901-4_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31900-7

  • Online ISBN: 978-3-030-31901-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics