Abstract
With the advent of Linked Open Data (LOD) initiatives, organizations have seen the opportunity of augmenting their internal data cube systems with these external data. While IT actors manage technical issues of internal and external sources, a new actor has emerged “the Chief Data Officer” (CDO), the role of which is to align and prioritize data activities with key organizational priorities and goals. Existing literature managing the incorporation of LOD in internal Data cubes mainly focus on technical aspects of the LOD source and ignores the CDO role in this strategy. In this paper, we claim that technical actions should be conducted by the managerial level, which is reflected through the goals of the organization data cube and their related Key Performance Indicators (KPIs). For doing this, we first propose a metamodel aligning the three models: the data-flow model, the goal model and the KPI model. Then, we propose a process for specifying KPIs into Sparql language, the standard language for querying LOD sources. Experiments are conducted to measure the impact of the decision of integrating external LOD sources at KPI/goal level and on the technical data level. A case tool dedicated to the CDO is implemented to conduct the proposed approach.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
References
Abelló Gamazo, A., Gallinucci, E., Golfarelli, M., Rizzi Bach, S., Romero Moral, O.: Towards exploratory OLAP on linked data. In: SEBD, pp. 86–93 (2016)
Baldacci, L., Golfarelli, M., Graziani, S., Rizzi, S.: Qetl: an approach to on-demand etl from non-owned data sources. DKE 112, 17–37 (2017)
Barone, D., Jiang, L., Amyot, D., Mylopoulos, J.: Reasoning with key performance indicators. In: Johannesson, P., Krogstie, J., Opdahl, A.L. (eds.) PoEM 2011. LNBIP, vol. 92, pp. 82–96. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24849-8_7
Berkani, N., Khouri, S., Bellatreche, L.: Value-driven approach for designing extended data warehouses. In: DOLAP (2019)
Ciferri, C., Ciferri, R., Gómez, L., Schneider, M., Vaisman, A., Zimányi, E.: Cube algebra: a generic user-centric model and query language for olap cubes. Int. J. Data Warehouse. Min. (IJDWM) 9(2), 39–65 (2013)
Deb Nath, R.P., Hose, K., Pedersen, T.B.: Towards a programmable semantic extract-transform-load framework for semantic data warehouses. In: DOLAP, pp. 15–24 (2015)
Djilani, Z.: Donner une autre vie à vos besoins fonctionnels : une approche dirigée par l’entreposage et l’analyse en ligne. (Give Another Life to Your Functional Requirements : An Approach Drvicen by Warehousing and Online Anaysis). Ph.D. thesis, École nationale supérieure de mécanique et d’aérotechnique, France (2017)
Etcheverry, L., Vaisman, A.: Querying semantic web data cubes. In: AMW, pp. 11–23 (2016)
Etcheverry, L., Vaisman, A., Zimányi, E.: Modeling and querying data warehouses on the semantic web using QB4OLAP. In: Bellatreche, L., Mohania, M.K. (eds.) DaWaK 2014. LNCS, vol. 8646, pp. 45–56. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10160-6_5
Gallinucci, E., Golfarelli, M., Rizzi, S., Abell, A., Romero, O.: Interactive multidimensional modeling of linked data for exploratory olap. Inf. Syst. 77, 86–104 (2018)
Gray, C.S.: Modern Strategy, vol. 42. Oxford University Press, Oxford (1999)
Horkoff, J., et al.: Strategic business modeling: representation and reasoning. SSM 13(3), 1015–1041 (2014)
Khouri, S., Aouimer, Y., Bellatreche, L., Ghomari, A.R.: Intgrer les LOD dans un cube de données : transformer une action technique en une dcision organisationnelle. In: To appear in Journes Entrepts de Donnes et Analyse en ligne (EDA 2019). RNTI (2019)
Khouri, S., Semassel, K., Bellatreche, L.: Managing data warehouse traceability: a life-cycle driven approach. In: Zdravkovic, J., Kirikova, M., Johannesson, P. (eds.) CAiSE 2015. LNCS, vol. 9097, pp. 199–213. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19069-3_13
Maté, A., Trujillo, J., Mylopoulos, J.: Conceptual modeling for indicator selection. Conceptual Modeling Perspectives, pp. 55–68. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67271-7_5
Maté, A., Trujillo, J., Mylopoulos, J.: Specification and derivation of key performance indicators for business analytics: a semantic approach. DKE 108, 30–49 (2017)
Matei, A., Chao, K.-M., Godwin, N.: OLAP for multidimensional semantic web databases. In: Castellanos, M., Dayal, U., Pedersen, T.B., Tatbul, N. (eds.) BIRTE 2013-2014. LNBIP, vol. 206, pp. 81–96. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46839-5_6
Rizzi, S., Abelló, A., Lechtenbörger, J., Trujillo, J.: Research in data warehouse modeling and design: dead or alive? In: DOLAP, pp. 3–10 (2006)
Saad, R., Teste, O., Trojahn, C.: OLAP manipulations on RDF data following a constellation model. In: 1st International Workshop on Semantic Statistics (2013)
Silva Souza, V.E., Mazn, J.N., Garrigs, I., Trujillo, J., Mylopoulos, J.: Monitoring strategic goals in data warehouses with awareness requirements. In: ACM SAC, pp. 10–75 (2012)
Tort, F., Teulier, R., Grosz, G., Charlet, J.: Ingénierie des besoins, ingénierie des connaissances: similarités et complémentarités des approches de modélisation. In: Journées francophones d’ingénierie des connaissances, pp. 263–275 (2000)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Khouri, S., Ghomari, A.R., Aouimer, Y. (2019). Thinking the Incorporation of LOD in Semantic Cubes as a Strategic Decision. In: Schewe, KD., Singh, N. (eds) Model and Data Engineering. MEDI 2019. Lecture Notes in Computer Science(), vol 11815. Springer, Cham. https://doi.org/10.1007/978-3-030-32065-2_20
Download citation
DOI: https://doi.org/10.1007/978-3-030-32065-2_20
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-32064-5
Online ISBN: 978-3-030-32065-2
eBook Packages: Computer ScienceComputer Science (R0)