Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Design and Simulation of a Deterministic Quantum Secure Direct Communication and Authentication Protocol Based on Three-Particle Asymmetric Entangled State

  • Conference paper
  • First Online:
Simulation Tools and Techniques (SIMUtools 2019)

Abstract

In order to improve eavesdropping detection efficiency, we propose a quantum secure direct communication and authentication protocol based on three-particle asymmetric entangled state and design an efficient quantum circuit for implementing the protocol. This protocol has two modes, in message mode, a qubit is used to transmit two bits classical information based on a Bell state, in control mode, three-particle asymmetric entangled state is inserted into the particle flow for detecting eavesdropper. Eavesdropping detection efficiency is got by calculating the relationship between the amount of information and detection probability, if eavesdroppers want to obtain all information, detection probability is 63%, the analysis results indicate that this proposal is more secure than other quantum secure direct communication protocol.

This work is supported by the National Natural Science Foundation of China (Grant No. U1636106, No. 61472048).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bostrom, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett 89(18), 187902 (2002)

    Article  Google Scholar 

  2. Gao, F., Guo, F.Z., Wen, Q.Y., et al.: Comparing the efficiencies of different detect strategies in the ping-pong protocol. Sci. China 51(12), 1853–1860 (2008)

    Google Scholar 

  3. Li, J., Guo, X.J., Song, D.J., et al.: Improved quantum “Ping-Pong” protocol based on extended three-particle GHz state. China Commun. 9(1), 111–116 (2012)

    Google Scholar 

  4. Quan, D.X., Pei, C.X., Liu, D., et al.: One-way deterministic secure quantum communication protocol based on single photons. Acta Physica Sinica 59(4), 2493–2497 (2010)

    Google Scholar 

  5. Zawadzki, P., Puchała, Z., Miszczak, J.A.: Increasing the security of the ping-pong protocol by using many mutually unbiased bases. Quantum Inf. Process. 12(1), 569–576 (2013)

    Article  MathSciNet  Google Scholar 

  6. Huang, W., Wen, Q.-Y., Jia, H.-Y., et al.: Fault tolerant quantum secure direct communication with quantum encryption against collective noise. Chin. Phys. B 21(10), 101–109 (2012)

    Google Scholar 

  7. Hu, J.Y., Yu, B., Jing, M.Y., et al.: Experimental quantum secure direct communication with single photons. Light Sci. Appl. 5(9), e16144 (2016)

    Article  Google Scholar 

  8. He, Y.F., Ma, W.P.: Three-party quantum secure direct communication against collective noise. Quantum Inf. Process. 16(10), 252 (2017)

    Article  MathSciNet  Google Scholar 

  9. Yang, C.W., Hwang, T.: Improved QSDC protocol over a collective-dephasing noise channel. Int. J. Theor. Phys. 51(12), 3941–3950 (2012)

    Article  MathSciNet  Google Scholar 

  10. Aravinda, S., Banerjee, A., Pathak, A., Srikanth, R., et al.: Orthogonal-state-based cryptography in quantum mechanics and local post-quantum theories. Int. J. Quantum Inf. 12(07n08), 175–179 (2014)

    Article  MathSciNet  Google Scholar 

  11. Xu, S.J., Chen, X.B., Wang, L.H., et al.: Two quantum direct communication protocols based on quantum search algorithm. Int. J. Theor. Phys. 54(7), 2436–2445 (2015)

    Article  MathSciNet  Google Scholar 

  12. Feng, Z.F., Yang, O.Y., Zhou, L., et al.: Entanglement assisted single-photon W state amplification. Opt. Commun. 340, 80–85 (2015)

    Article  Google Scholar 

  13. Wu, F.Z., Yang, G.J., Wang, H.B., et al.: High-capacity quantum secure direct communication with two-photon six-qubit hyperentangled states. Sci. China (Phys. Mech. Astron.) 60(12), 120313 (2017)

    Article  Google Scholar 

  14. Li, J., Li, N., Li, L.L., Wang, T.: One step quantum key distribution based on EPR entanglement. Sci. Rep. 6, 28767 (2016)

    Article  Google Scholar 

  15. Chang, S.K.: Improved protocols of secure quantum communication using W states. Int. J. Theor. Phys. 52(6), 1914–1924 (2013)

    Article  MathSciNet  Google Scholar 

  16. Chia-Wei, T., Tzonelih, H.: Deterministic quantum communication using the symmetric W state. Sci. China (Phys. Mech. Astron.) 56(10), 1903–1908 (2013)

    Article  Google Scholar 

  17. Shukla, C.: Design and analysis of quantum communication protocols. Chem. Res. Toxicol. 15(7), 972–978 (2015)

    Google Scholar 

  18. Toshinai, K., Mondal, M.S., Nakazato, M., et al.: On optimising quantum communication in verifiable quantum computing. J. Bacteriol. 165(1), 321–323 (2015)

    Google Scholar 

  19. Wu, Y., Zhou, J., Gong, X., et al.: Continuous-variable measurement-device-independent multipartite quantum communication. J. Phys. Soc. Jpn. 86(2), 2325 (2016)

    Google Scholar 

  20. Nie, Y.Y., Li, Y.H., Liu, J.C., et al.: Quantum state sharing of an arbitrary three-qubit state by using four sets of W-class states. Opt. Commun. 284(5), 1457–1460 (2011)

    Article  Google Scholar 

  21. Wang, M., Ma, W., Shen, D., et al.: A new controlled quantum secure direct communication protocol based on a four-qubit cluster state. Mod. Phys. Lett. B 28(24), 1450194 (2014)

    Article  MathSciNet  Google Scholar 

  22. Li, Y.B., Song, T.T., Huang, W., et al.: Fault-tolerant quantum secure direct communication protocol based on decoherence-free states. Int. J. Theor. Phys. 54(2), 589–597 (2015)

    Article  MathSciNet  Google Scholar 

  23. Chang, Y., Zhang, S.B., Yan, L.L.: A bidirectional quantum secure direct communication protocol based on five-particle cluster state. China Phys. Lett. 30(9), 090301 (2013)

    Article  Google Scholar 

  24. Liu, Z., Chen, H., Liu, W.: Cryptanalysis of controlled quantum secure direct communication and authentication protocol based on five-particle cluster state and quantum one-time pad. Int. J. Theor. Phys. 55(10), 4564–4576 (2016)

    Article  Google Scholar 

  25. Zhang, M.H., Li, H.F., Xia, Z.Q., et al.: Semiquantum secure direct communication using EPR pairs. Quantum Inf. Process. 16(5), 117 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanyan Hou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hou, Y. et al. (2019). Design and Simulation of a Deterministic Quantum Secure Direct Communication and Authentication Protocol Based on Three-Particle Asymmetric Entangled State. In: Song, H., Jiang, D. (eds) Simulation Tools and Techniques. SIMUtools 2019. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 295. Springer, Cham. https://doi.org/10.1007/978-3-030-32216-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32216-8_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32215-1

  • Online ISBN: 978-3-030-32216-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics